May 24, 2019

In brief: Radiation damage lowers melting point of potential fusion reactor material

SLAC’s ‘electron camera’ films rapidly melting tungsten and reveals atomic-level material behavior that could impact the design of future reactors.

By Manuel Gnida

Radiation damage lowers the melting point of the metal tungsten, an effect that could contribute to material failure in nuclear fusion reactors and other applications where materials are exposed to particle radiation from extremely hot fusion plasma. That’s the result of a study, published today in Science Advances, that was led by researchers at the Department of Energy’s SLAC National Accelerator Laboratory.

To mimic the damage materials can sustain under the harsh conditions of a fusion experiment, the team bombarded tungsten samples with energetic ions. Then, they heated the samples with a high-power laser and “filmed” how the samples’ atoms responded with SLAC’s ultrafast “electron camera,” an instrument for ultrafast electron diffraction (MeV-UED). They found that damaged tungsten liquefied at a lower temperature than pristine tungsten. Combining their experimental data with advanced simulations allowed the researchers to quantify, for the first time, how the ultrafast melting process is affected by radiation damage.

Video

The results could aid the design of fusion reactor materials, for instance by providing ideas for dealing with damage sites, the scientists said. They also underline the importance of high-energy upgrades to SLAC’s Linac Coherent Light Source (LCLS) X-ray laser and of power enhancements to its laser facility, which would pave the way for even more detailed studies of materials under extreme conditions.

SLAC’s Mianzhen Mo and Samuel Murphy from Lancaster University in the UK were the study’s lead authors. SLAC’s Siegfried Glenzer was the principal investigator. Other contributing institutions were Imperial College London in the UK and DOE’s Los Alamos National Laboratory. SLAC’s MeV-UED instrument is part of LCLS, a DOE Office of Science user facility. This work was largely funded by the Office of Science.  

Video

Related content:

Atomic movie of melting gold could help design materials for future fusion reactors


Citation: Mianzhen Mo et al., Science Advances, 24 May 2019 (10.1126/sciadv.aaw0392)

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

 

Tungsten melting
Computer simulations of the structural changes in tungsten metal five trillionths of a second after rapid heating with a laser pulse. Each dot represents an atom in the material. Colors indicate whether the atom is part of an ordered, solid state (red); a disordered, liquefied state (blue); or a state in between (green). While pristine tungsten (left) remains a solid, radiation damage causes the metal to melt at the same temperature. (10.1126/sciadv.aaw0392)
Dig Deeper

Related stories

News Brief

Scientists developed a groundbreaking technology that allows them to see sound waves and microscopic defects inside crystals, promising insights that connect ultrafast atomic motion...

CXI hutch
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Sebek’s extraordinary career at SSRL includes helping build the facility’s original electron injector back in the 1980s and working on almost all of its...

This photograph shows 2023 Lytle award winner Jim Sebek at work on SSRL's electrical systems.
News Brief

Scientists developed a groundbreaking technology that allows them to see sound waves and microscopic defects inside crystals, promising insights that connect ultrafast atomic motion...

CXI hutch
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Sebek’s extraordinary career at SSRL includes helping build the facility’s original electron injector back in the 1980s and working on almost all of its...

This photograph shows 2023 Lytle award winner Jim Sebek at work on SSRL's electrical systems.
News Feature

X-ray laser studies help researchers identify early steps in the freezing process to better understand how clouds make ice and their effect on climate.

supercooled water droplets
News Feature

Leora Dresselhaus-Marais, Claudio Emma,  Bernhard Mistlberger and Johanna Nelson Weker will pursue cutting-edge research into decarbonizing steel production, theoretical physics, generating more intense particle...

This photo shows all four recipients from SLAC and Stanford of the DOE's 2023 Early Career Award
News Feature

Bringing ultrafast physics to structural biology has revealed the coordinated dance of molecules in unprecedented clarity, which could aid in the design of new...

molecular control