May 24, 2019

In brief: Radiation damage lowers melting point of potential fusion reactor material

SLAC’s ‘electron camera’ films rapidly melting tungsten and reveals atomic-level material behavior that could impact the design of future reactors.

By Manuel Gnida

Radiation damage lowers the melting point of the metal tungsten, an effect that could contribute to material failure in nuclear fusion reactors and other applications where materials are exposed to particle radiation from extremely hot fusion plasma. That’s the result of a study, published today in Science Advances, that was led by researchers at the Department of Energy’s SLAC National Accelerator Laboratory.

To mimic the damage materials can sustain under the harsh conditions of a fusion experiment, the team bombarded tungsten samples with energetic ions. Then, they heated the samples with a high-power laser and “filmed” how the samples’ atoms responded with SLAC’s ultrafast “electron camera,” an instrument for ultrafast electron diffraction (MeV-UED). They found that damaged tungsten liquefied at a lower temperature than pristine tungsten. Combining their experimental data with advanced simulations allowed the researchers to quantify, for the first time, how the ultrafast melting process is affected by radiation damage.

Video

The results could aid the design of fusion reactor materials, for instance by providing ideas for dealing with damage sites, the scientists said. They also underline the importance of high-energy upgrades to SLAC’s Linac Coherent Light Source (LCLS) X-ray laser and of power enhancements to its laser facility, which would pave the way for even more detailed studies of materials under extreme conditions.

SLAC’s Mianzhen Mo and Samuel Murphy from Lancaster University in the UK were the study’s lead authors. SLAC’s Siegfried Glenzer was the principal investigator. Other contributing institutions were Imperial College London in the UK and DOE’s Los Alamos National Laboratory. SLAC’s MeV-UED instrument is part of LCLS, a DOE Office of Science user facility. This work was largely funded by the Office of Science.  

Video

Related content:

Atomic movie of melting gold could help design materials for future fusion reactors


Citation

Mianzhen Mo et al., Science Advances, 24 May 2019 (10.1126/sciadv.aaw0392)


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science.

 

Tungsten melting
Computer simulations of the structural changes in tungsten metal five trillionths of a second after rapid heating with a laser pulse. Each dot represents an atom in the material. Colors indicate whether the atom is part of an ordered, solid state (red); a disordered, liquefied state (blue); or a state in between (green). While pristine tungsten (left) remains a solid, radiation damage causes the metal to melt at the same temperature. (10.1126/sciadv.aaw0392)
Dig Deeper

Related stories

Feature

SLAC experts discuss how microelectronics impacts our lives and where the future lies in this Q&A.

Angelo Dragone and Paul McIntyre
News Release

Surfing a plasma wave, electrons get an energy and brightness boost.

Illustration of electrons traveling through a plasma chamber
Feature

NLCTA staff helped undergraduates from Harvey Mudd College use the facility’s electron beam to test a detector they designed. 

A team from Harvey Mudd College inside the NLCTA accelerator housing at SLAC.
Feature

SLAC experts discuss how microelectronics impacts our lives and where the future lies in this Q&A.

Angelo Dragone and Paul McIntyre
News Release

Surfing a plasma wave, electrons get an energy and brightness boost.

Illustration of electrons traveling through a plasma chamber
Feature

NLCTA staff helped undergraduates from Harvey Mudd College use the facility’s electron beam to test a detector they designed. 

A team from Harvey Mudd College inside the NLCTA accelerator housing at SLAC.
News Release

Experiments running at these higher pulse rates will allow scientists to capture ultrafast processes with greater precision, collect data more efficiently and explore phenomena...

lcls ii milestone
Feature

Researchers at SLAC are developing experimental techniques to evaluate new candidates for inertial fusion energy targets. 

a graphic in the style of graphic novel depicts four lasers converging on a spherical target, which represents an inertial fusion energy reaction
Feature

The SLAC team is developing digital twins – powered by AI and high-performance computing – to help quickly shape high-quality particle beams for the...

hand pointing to digital twin