September 24, 2020

SLAC’s Xijie Wang wins prestigious accelerator science award

Institute of Electrical and Electronics Engineers recognizes his contributions to developing electron beams that power unique ‘electron cameras’ and could advance X-ray lasers.

By Manuel Gnida

Xijie Wang, an accelerator physicist at the Department of Energy’s SLAC National Accelerator Laboratory, will receive the 2021 Nuclear and Plasma Science Society’s Particle Accelerator Science and Technology Award. Bestowed by the Institute of Electrical and Electronics Engineers (IEEE), the prestigious award recognizes individuals who have made outstanding contributions to the development of particle accelerator science and technology.

Wang is cited “for contributions to the development of high-brightness, ultrafast electron beams and their applications to free-electron lasers and ultrafast electron diffraction.” At SLAC, these beams power the Linac Coherent Light Source (LCLS) X-ray laser and a unique “electron camera,” an instrument for ultrafast electron diffraction (UED).

Xijie Wang
SLAC’s Xijie Wang is one of two recipients of the 2021 PAST Award, bestowed by the Institute of Electrical and Electronics Engineers, IEEE. (Xijie Wang)

Both UED and X-ray lasers allow scientists to study the atomic world in unprecedented new ways, furthering our understanding of how rapid motions of atoms affect biological function, chemical reactions, material properties and more. UED examines matter directly with high-energy beams of electrons, while X-ray lasers first convert some of that beam energy into ultra-bright flashes of X-ray light.

Wang made numerous contributions to technologies that generate the powerful electron beams needed to drive X-ray lasers. This work includes past projects at DOE’s Brookhaven National Laboratory and Argonne National Laboratory, as well as leading a collaboration of SLAC, Brookhaven and the University of California, Los Angeles that developed the prototype electron source for LCLS.

Since Wang joined SLAC in 2013, he has pioneered the development of the lab’s unique UED instrument and has stood up a world-leading UED research program that has already produced a wealth of groundbreaking science, including discoveries in solar cell and data storage materials, movies of molecules vibrating and breaking apart, and studies of radiation damage in materials for nuclear fusion reactors. Last year, the UED instrument was integrated into SLAC’s LCLS user facility, making UED available to scientists worldwide.

Wang, who holds an undergraduate degree from Shaanxi Normal University in China and a PhD from UCLA, both in physics, is one of two awardees that are recognized with the 2021 award. The other is Nathan Moody of DOE’s Los Alamos National Laboratory, who was cited “for deep and broad contributions to accelerator science and technology, especially multi-disciplinary photocathode science.” The researchers will be presented with their awards at next year’s International Particle Accelerator Conference in Brazil.

Past recipients of the award include SLAC’s Perry Wilson and David Z. Farkas (1991), John Seeman (2001), Vitaly Yakimenko (2012, then at Brookhaven National Laboratory) and Mark Hogan (2013).

SLAC’s UED instrument is part of LCLS, a DOE Office of Science user facility.

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Feature

Two GEM Fellows reflect on their summer internships at SLAC and share their thoughts on representation and mentorship.

Nate Keyes and Zariq George
News Feature
Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and...
MEC silicon
News Feature

SLAC works with two small businesses to make its ACE3P software easier to use in supercomputer simulations for optimizing the shapes of accelerator structures.

A large, complex shape is seen against a blue background crisscrossed with white lines. The shape is dark blue and resembles a brick partially topped with a thick shark’s fin. Three areas of bright red, orange and green, are on the shape’s bottom edge.
News Feature

Two GEM Fellows reflect on their summer internships at SLAC and share their thoughts on representation and mentorship.

Nate Keyes and Zariq George
News Feature
Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and...
MEC silicon
News Feature

SLAC works with two small businesses to make its ACE3P software easier to use in supercomputer simulations for optimizing the shapes of accelerator structures.

A large, complex shape is seen against a blue background crisscrossed with white lines. The shape is dark blue and resembles a brick partially topped with a thick shark’s fin. Three areas of bright red, orange and green, are on the shape’s bottom edge.
News Brief

Knowing a magnet’s past will allow scientists to customize particle beams more precisely in the future. As accelerators stretch for higher levels of performance...

A magnet on a test stand inside SLAC National Accelerator Laboratory.
News Feature

Edelen draws on machine learning to fine tune particle accelerators, while Kurinsky develops dark matter detectors informed by quantum information science.

Side by side photographs of a woman and a man.
Press Release

The facility, LCLS-II, will soon sharpen our view of how nature works on ultrasmall, ultrafast scales, impacting everything from quantum devices to clean energy.

LCLS-II cooldown