August 14, 2017

Video: Dark Matter Hunt with LUX-ZEPLIN

SLAC scientists are helping to build and test one of the biggest and most sensitive detectors ever designed to catch hypothetical WIMP particles.

Researchers at the Department of Energy’s SLAC National Accelerator Laboratory are on a quest to solve one of physics’ biggest mysteries: What exactly is dark matter – the invisible substance that accounts for 85 percent of all the matter in the universe but can’t be seen even with our most advanced scientific instruments?

Most scientists believe it’s made of ghostly particles that rarely bump into their surroundings; that’s why billions of dark matter particles might zip right through our bodies every second without us even noticing. Leading candidates for dark matter particles are WIMPs, or weakly interacting massive particles.

Now SLAC is helping to build and test one of the biggest and most sensitive detectors ever designed to catch a WIMP – the LUX-ZEPLIN or LZ detector. The following video explains how it works.

Video

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

LZ Dark Matter Detector
SLAC is helping to build and test the LUX-ZEPLIN (LZ) detector, one of the biggest and most sensitive detectors ever designed to catch hypothetical dark matter particles known as weakly interacting massive particles (WIMPs).  (Greg Stewart/SLAC National Accelerator Laboratory)
Dig Deeper

Related stories

News Feature

Three SLAC scientists explain what they do to ensure the world's largest digital camera for astronomy is ready for the big time.

A digital sensor array is visible through a large camera lens inside a white room.
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Line intensity mapping measurements taken with a new instrument will allow astrophysicists to study galaxies too far away for traditional methods.

The South Pole Telescope
News Feature

Three SLAC scientists explain what they do to ensure the world's largest digital camera for astronomy is ready for the big time.

A digital sensor array is visible through a large camera lens inside a white room.
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Line intensity mapping measurements taken with a new instrument will allow astrophysicists to study galaxies too far away for traditional methods.

The South Pole Telescope
News Feature

Leora Dresselhaus-Marais, Claudio Emma,  Bernhard Mistlberger and Johanna Nelson Weker will pursue cutting-edge research into decarbonizing steel production, theoretical physics, generating more intense particle...

This photo shows all four recipients from SLAC and Stanford of the DOE's 2023 Early Career Award
News Feature

The reanalysis considered new types of particle collisions and how dark matter particles interact with the Earth. 

clusters of galaxies collide showing separation of dark matter
News Feature

It takes a lot of meetings, travel logistics and even tracking down some parts to keep a large team collaborating on a project like...

A portrait of Regina Matter.