SLAC topics

X-ray scattering and diffraction RSS feed

See content related to X-ray scattering and X-ray diffraction here below.

Illustration of LCLS diffraction protein crystals.
Feature

They used SLAC’s ultrafast X-ray laser to follow the impact of a single electron moving within a molecule during an entire chemical reaction.

An illustration of X-rays scattering off the valence electrons surrounding ammonia molecules and getting captured on a detector.
Feature

With a suite of reimagined instruments, researchers take up scientific inquiries that were out of reach just one year ago. 

Large metallic machine in a lab, featuring valves, circular bolts, and digital displays with surrounding wires and tubing.
News Brief

The team unexpectedly formed gold hydride in an experiment that could pave the way for studying materials under extreme conditions like those found inside...

Intense pulses from an X-ray free-electron laser heat compressed samples of hydrocarbons to extreme conditions, resulting in the reaction of gold and hydrogen to form gold hydride.
News Brief

Results obtained with SLAC’s X-ray laser show how tiny magnetic coils can align over a surprisingly broad timescale, inspiring new ideas for microelectronics. 

Vibrant 3D model with red and blue wave patterns on a layered surface, depicting magnetization points, set against blurry background.
Feature

Researchers taking the first-ever direct measurement of atom temperature in extremely hot materials inadvertently disproved a decades-old theory and upended our understanding of superheating. 

Graphic representation shows a pulse of yellow light hitting a lattice and diffracting into a spectrum of color
Feature

Ultrafast electrons at SLAC’s LCLS facility resolved the structural changes in a light-activated molecule to determine which simulations work best. 

Graphic representation of several molecules floating through space, circle of papers representing scientific results
Multimedia

Now 10,000 times brighter and thousands of times faster, LCLS sheds light on the formation of free radicals in nature. 

a closeup of the target chamber of the RIXS experimental hutch
Feature

The upgrades to SSRL’s resonant soft X-ray scattering beam line could reveal the hidden physics in high-temperature superconductors.

A gold beam strikes a sample inside a copper colored apparatus. A white beam emerges.
Feature

Oxidizing chemicals break this cellular power plant into useless bits, leading to  Parkinson’s disease, ALS, heart disease, diabetes, cancer and more. A small molecule...

Purple dots arranged in bunches.
Feature

Advanced imaging technique reveals catalyst degradation processes, addressing a key barrier to converting carbon dioxide into liquid fuel.

Walter Drisdell and Aidan Coffey of Berkeley Lab’s Chemical Sciences Division at Berkeley Lab’s LiSA research facility adjusting a pump that flows liquid through the electrochemical cell
News Brief

The new findings highlight the need for ongoing monitoring of H5N1’s evolution in nature. 

Chickens in a grassy field
Feature

Following a boom in catalysis users at SSRL, Beam Line 10-2 has been transformed and outfitted with new technologies. 

Beam Line 10-2 hutch