SLAC topics

LCLS-II RSS feed

LCLS-II will be a transformative tool for energy science, qualitatively changing the way that X-ray imaging, scattering and spectroscopy can be used to study how natural and artificial systems function. It will produce X-ray pulses that are 10,000 times brighter, on average, than those of LCLS and that arrive up to a million times per second.

Related Link:
LCLS-II

Illustration of SLAC's cryoplant refrigerator.

News Feature

The facility is now one step away from releasing an unprecedented stream of ultra-bright X-rays.

This is a graphic representation of electron bunches travelling through SLAC's linear accelerator.
Press Release

After decades of effort, scientists have finally seen the process by which nature creates the oxygen we breathe using SLAC’s X-ray laser.

Photosystem II
News Feature

Once built, the system could produce fast X-ray pulses ten times more powerful than ever before.

illustration of an electron beam traveling through a niobium cavity – a key component of SLAC’s future LCLS-II X-ray laser.
News Feature

A machine learning algorithm automatically extracts information to speed up – and extend – the study of materials with X-ray pulse pairs.

A pattern of red and yellow dots surrounded by a ring of blue dots on a black background.
News Feature

The Stanford Board of Trustees held its first meeting of the 2022-23 academic year Oct. 17-18. Trustees toured the SLAC National Accelerator Laboratory and...

Aerial photo of SLAC research yard
News Feature

En route to record-breaking X-rays, SLAC’s Cryogenic team built a helium-refrigeration plant that lowers the LCLS-II accelerator to superconducting temperatures.

Images of frost and a thermometer superimposed over an aerial view of an accelerator building.
News Feature

An extension of the Stanford Research Computing Facility will host several data centers to handle the unprecedented data streams that will be produced by...

SRCF-II
News Feature

The Small Business Innovation Research Program brings government and private industry together to develop next-generation X-ray optics for LCLS-II.

A narrow two-mile long building stretches through trees and foothills.
SLAC Science Explained

Molecular movie-making is both an art and a science; the results let us watch how nature works on the smallest scales.

Molecular movie filmstrip.
Press Release

The facility, LCLS-II, will soon sharpen our view of how nature works on ultrasmall, ultrafast scales, impacting everything from quantum devices to clean energy.

LCLS-II cooldown
News Feature

The leaders of SLAC's Technology Innovation Directorate discuss how their group supports the lab's most innovative projects.

TID senior managers
News Feature

Over the past few years, Kathleen Ratcliffe and Tien Fak Tan have worked together to help build the superconducting accelerator that will drive new...

SLAC's Tien Tan, left, and Kathleen Ratcliffe pose for a portrait outside a SLAC building.