December 9, 2024

Existing EV batteries may last up to 40% longer than expected

Consumers’ real-world stop-and-go driving of electric vehicles benefits batteries more than the steady use simulated in almost all laboratory tests of new battery designs, Stanford-SLAC study finds.

By Mark Golden


About SLAC

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Brief

Supported by SLAC’s catalysis group, researchers have discovered a promising method to remove contaminants during the making of polymers.

Molecules strike a material below.
News Brief

SSRL scientists have figured out how platinum electrodes dissolve, potentially paving the way for renewable energy improvements.

White dots on a black background, with additional purple and blue dots and purple triangles connecting them.
News Brief

As a member of a collaborative team led by General Atomics, SLAC will help bridge basic research programs with the growing fusion industry. 

Graphic representation of lasers hitting a fusion fuel target in a fusion target chamber
News Brief

Supported by SLAC’s catalysis group, researchers have discovered a promising method to remove contaminants during the making of polymers.

Molecules strike a material below.
News Brief

SSRL scientists have figured out how platinum electrodes dissolve, potentially paving the way for renewable energy improvements.

White dots on a black background, with additional purple and blue dots and purple triangles connecting them.
News Brief

As a member of a collaborative team led by General Atomics, SLAC will help bridge basic research programs with the growing fusion industry. 

Graphic representation of lasers hitting a fusion fuel target in a fusion target chamber
News Brief

The research lays the groundwork for deeper exploration of high-temperature superconducting materials, with real-world applications such as lossless power grids and advanced quantum technologies.

superconductivity
News Feature

A market and supply chain analysis for sodium- and lithium-ion batteries is the first by STEER, a new Stanford-SLAC energy technology analysis program.

An illustration of the periodic table, featuring lithium and sodium, along with a data graph.
News Brief

LCLS X-rays allowed researchers to connect the molecular dynamics of supercritical carbon dioxide, used in industrial and environmental applications, with its unique properties.

A figure showing atoms and blue blobs projecting an image onto a screen.