Conceptual illlustration showing a beam of light entering from the right and hitting a material, ejecting a sphere representing an electron
January 26, 2022

SLAC and Stanford researchers reveal the fourth signature of the superconducting transition in cuprates

The results cap 15 years of detective work aimed at understanding how these materials transition into a superconducting state where they can conduct electricity with no loss.

By Glennda Chui

When an exciting and unconventional new class of superconducting materials was discovered 35 years ago, researchers cheered.

Like other superconductors, these materials, known as copper oxides or cuprates, conducted electricity with no resistance or loss when chilled below a certain point – but at much higher temperatures than scientists had thought possible. This raised hopes of getting them to work at close to room temperature for perfectly efficient power lines and other uses.

Research quickly confirmed that they showed two more classic traits of the transition to a superconducting state: As superconductivity developed, the material expelled magnetic fields, so that a magnet placed on a chunk of the material would levitate above the surface. And its heat capacity – the amount of heat needed to raise their temperature by a given amount – showed a distinctive anomaly at the transition. 

But despite decades of effort with a variety of experimental tools, the fourth signature, which can be seen only on a microscopic scale, remained elusive: the way electrons pair up and condense into a sort of electron soup as the material transitions from its normal state to a superconducting state.

Now a research team at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University has finally revealed that fourth signature with precise, high-resolution measurements made with angle-resolved photoemission spectroscopy, or ARPES, which uses light to eject electrons from the material. Measuring the energy and momentum of those ejected electrons reveals how the electrons inside the material behave.

Illustration with four icons representing four classic traits of superconducting materials: Conducting electric current with no loss, expelling magnetic fields, a unique response to being heated and a transition point where electrons pair up and condense.
How can you tell if a material is a superconductor? Four classic signatures are illustrated here. Left to right: 1) It conducts electricity with no resistance when chilled below a certain temperature. 2) It expels magnetic fields, so a magnet placed on top of it will levitate. 3) Its heat capacity – the amount of heat needed to raise its temperature by a given amount – shows a distinctive anomaly as the material transitions to a superconducting state. 4) And at that same transition point, its electrons pair up and condense into a sort of electron soup that allows current to flow freely. Now experiments at SLAC and Stanford have captured this fourth signature in cuprates, which become superconducting at relatively high temperatures, and shown that it occurs in two distinct steps and at very different temperatures. Knowing how that happens in fine detail suggests a new and very practical direction for research into these enigmatic materials. (Greg Stewart, SLAC National Accelerator Laboratory)

In a paper published today in Nature, the team confirmed that the cuprate material they studied, known as Bi2212, made the transition to a superconducting state in two distinct steps and at very different temperatures.

“Now we know what happens at the superconducting transition in very fine detail, and we can think about how to make that happen at higher temperatures,” said Sudi Chen, who led the study while a PhD student at Stanford. “That’s a very practical direction.”

Stanford Professor Zhi-Xun Shen, an investigator with the Stanford Institute for Materials and Energy Sciences (SIMES) at SLAC who supervised the research, said, “This is the climax of 15 years of scientific detective work in trying to understand the electronic structure of these materials, and it provides the missing link for a holistic picture of unconventional superconductivity. We knew these materials should produce distinctive spectroscopic signatures as the paired electrons coalesce into a quantum condensate; the amazing thing is that it took so long to find it.”

Unconventional transitions

In conventional superconductors, which were discovered in 1911, electrons overcome their mutual repulsion and form what are known as Cooper pairs, which immediately condense into a sort of electron soup that allows electrical current to travel unimpeded.

But in the unconventional cuprates, scientists have speculated that electrons pair up at one temperature but don't condense until they're cooled to a significantly lower temperature; only at that point does the material become superconducting.

While the details of this transition had been explored with other methods, until now it had not been confirmed with microscopic probes like photoemission spectroscopy that study how matter absorbs light and emits electrons. It’s an important independent measure of how electrons in the material behave.

Shen started his scientific career at Stanford just as the discovery of the new cuprate superconductors was coming to light, and he has devoted more than three decades to unraveling their secrets and  improving photoemission spectroscopy as a tool for doing that.

For this study, cuprate samples made by collaborators in Japan were examined at two ARPES setups – one in Shen’s Stanford laboratory, equipped with an ultraviolet laser, and the other at SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL) with the help of SLAC staff scientists and longtime collaborators Makoto Hashimoto and Donghui Lu.

 

Portrait of three researchers -Makoto Hashimoto, Zhi-Xen Shen and Donghui Lu - with equipment they used to carry out their work at SLAC's Stanford Synchrotron Radiation Lightsource.
Stanford Professor Zhi-Xun Shen (center) and SLAC staff scientists Makoto Hashimoto (left) and Donghui Lu are seen in early 2020 at a Stanford Synchrotron Radiation Lightsource beamline at SLAC. Experiments here and at Stanford, led by Stanford PhD student Sudi Chen (not pictured), have revealed the long-sought fourth signature of the superconducting transition – the point where pairs of electrons begin to conduct electricity with no loss – in a cuprate material. (Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory)

Peeling a physics onion

“Recent improvements in the overall performance of those instruments were an important factor in obtaining these high-quality results,” Hashimoto said. “They allowed us to measure the energy of the ejected electrons with more precision, stability and consistency.”

Lu added, “It’s very challenging to get a full understanding of the physics of high-temperature superconductivity. Experimentalists use different tools to probe different aspects of this hard problem, and this provides deeper insights.”

Shen said the long-term study of these unconventional materials has been like peeling layers from an onion to reveal the surprising and interesting physics within.

Now, he said, confirming that the transition to superconductivity occurs in two separate steps “gives us two knobs we can tune to get the materials to superconduct at higher temperatures.”

Sudi Chen is now a postdoctoral fellow at the University of California, Berkeley. Researchers from the National Institute of Advanced Industrial Science and Technology in Japan, the Lorentz Institute for Theoretical Physics at Leiden University in the Netherlands, and DOE’s Lawrence Berkeley National Laboratory also contributed to this work, which was funded by the DOE Office of Science. SSRL is a DOE Office of Science user facility.

Citation: Su-Di Chen et al., Nature, 26 January 2022 (10.1038/s41586-021-04251-2)

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

 

 

Dig Deeper

Related stories

News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

The software tool sorts through messy data to reveal what’s really going on with solar panels on cloudy and sunny days.

This is a graphic representation of solar power system data. The data is processed by algorithms, which turn the data into specific power loss causes.