# Your search

PROGRAMMING LANGUAGES

Online resource

## Results

32 resources-
Murfet, D. (2019).
*dmurfet/2simplicialtransformer*. Retrieved from https://github.com/dmurfet/2simplicialtransformer (Original work published 2019) -
Murfet, D., Clift, J., Doryn, D., & Wallbridge, J. (2019). Logic and the $2$-Simplicial Transformer.
*ArXiv:1909.00668 [Cs, Stat]*. Retrieved from http://arxiv.org/abs/1909.00668 -
Baudart, G., Mandel, L., Atkinson, E., Sherman, B., Pouzet, M., & Carbin, M. (2019). Reactive Probabilistic Programming.
*ArXiv:1908.07563 [Cs]*. Retrieved from http://arxiv.org/abs/1908.07563 -
Ehrhard, T. (2019). Differentials and distances in probabilistic coherence spaces.
*ArXiv:1902.04836 [Cs]*. Retrieved from http://arxiv.org/abs/1902.04836 -
Vákár, M., Kammar, O., & Staton, S. (2018). A Domain Theory for Statistical Probabilistic Programming.
*ArXiv:1811.04196 [Cs]*. Retrieved from http://arxiv.org/abs/1811.04196 -
Murfet, D. (2018).
*dmurfet/deeplinearlogic*. Retrieved from https://github.com/dmurfet/deeplinearlogic (Original work published 2016) -
Fages, F., Martinez, T., Rosenblueth, D. A., & Soliman, S. (2018). Influence Networks Compared with Reaction Networks: Semantics, Expressivity and Attractors.
*IEEE/ACM Trans. Comput. Biol. Bioinformatics*,*15*(4), 1138–1151. https://doi.org/10/ggdf94 -
Murfet, D. (2018).
*dmurfet/polysemantics*. Retrieved from https://github.com/dmurfet/polysemantics (Original work published 2016) -
Ehrhard, T., & Tasson, C. (2018). Probabilistic call by push value.
*ArXiv:1607.04690 [Cs]*. https://doi.org/10/ggdk8z -
Castellan, S., Clairambault, P., Paquet, H., & Winskel, G. (2018). The concurrent game semantics of Probabilistic PCF. In
*Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’18*(pp. 215–224). Oxford, United Kingdom: ACM Press. https://doi.org/10/ggdjfz -
Ścibior, A., Kammar, O., Vákár, M., Staton, S., Yang, H., Cai, Y., … Ghahramani, Z. (2017). Denotational validation of higher-order Bayesian inference.
*Proceedings of the ACM on Programming Languages*,*2*(POPL), 1–29. https://doi.org/10.1145/3158148 -
Ehrhard, T., Pagani, M., & Tasson, C. (2017). Measurable Cones and Stable, Measurable Functions.
*Proceedings of the ACM on Programming Languages*,*2*(POPL), 1–28. https://doi.org/10/ggdjf8 -
Heunen, C., Kammar, O., Staton, S., & Yang, H. (2017). A Convenient Category for Higher-Order Probability Theory.
*ArXiv:1701.02547 [Cs, Math]*. Retrieved from http://arxiv.org/abs/1701.02547 -
Staton, S. (2017). Commutative Semantics for Probabilistic Programming. In H. Yang (Ed.),
*Programming Languages and Systems*(Vol. 10201, pp. 855–879). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-54434-1_32 -
Keimel, K., & Plotkin, G. D. (2017). Mixed powerdomains for probability and nondeterminism.
*ArXiv:1612.01005 [Cs]*. https://doi.org/10/ggdmrp -
Jacobs, B., & Zanasi, F. (2017). A Formal Semantics of Influence in Bayesian Reasoning.
*Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik GmbH, Wadern/Saarbruecken, Germany*. https://doi.org/10/ggdgbc -
Jacobs, B., & Zanasi, F. (2016). A Predicate/State Transformer Semantics for Bayesian Learning.
*Electronic Notes in Theoretical Computer Science*,*325*, 185–200. https://doi.org/10/ggdgbb -
Ehrhard, T. (2016). An introduction to Differential Linear Logic: proof-nets, models and antiderivatives.
*ArXiv:1606.01642 [Cs]*. Retrieved from http://arxiv.org/abs/1606.01642 -
Staton, S., Yang, H., Heunen, C., Kammar, O., & Wood, F. (2016). Semantics for probabilistic programming: higher-order functions, continuous distributions, and soft constraints.
*Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science - LICS ’16*, 525–534. https://doi.org/10/ggdf97 -
Ehrhard, T., Tasson, C., & Pagani, M. (2014). Probabilistic coherence spaces are fully abstract for probabilistic PCF. In
*Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages - POPL ’14*(pp. 309–320). San Diego, California, USA: ACM Press. https://doi.org/10/ggdf9x

## Explore

### BIOLOGY, NEUROSCIENCE & PSYCHOLOGY

- Biology (2)

### CATEGORICAL LOGIC

- Effectus theory (1)
- Linear logic (11)

### DIFFERENTIAL CALCULUS

- Differentiation (4)

### MACHINE LEARNING

- Machine Learning (5)

### MODEL CHECKING AND STATE MACHINES

- Coalgebras (2)
- Rewriting theory (2)
- Symbolic logic (3)
- Transition systems (6)

### PROBABILITY & STATISTICS

### PROGRAMMING LANGUAGES

### Methodology

- Implementation (5)

### Topic

- Abstract machines (3)
- Algebra (2)
- Bayesian inference (1)
- Bayesianism (4)
- Biology (2)
- Categorical ML (3)
- Categorical probability theory (3)
- Coalgebras (2)
- Coherence spaces (4)
- Denotational semantics (16)
- Differential Linear Logic (3)
- Differentiation (4)
- Effectus theory (1)
- Game semantics (1)
- Implementation (5)
- Interactive semantics (1)
- Linear logic (8)
- Machine learning (4)
- Powerdomains (4)
- Probabilistic programming (13)
- Probabilistic transition systems (2)
- Programming language theory (18)
- Rewriting theory (2)
- Semantics (10)
- Symbolic logic (3)
- Systems biology (2)
- Transition systems (2)
- Type theory (1)

### Resource type

- Book Section (1)
- Computer Program (3)
- Conference Paper (4)
- Journal Article (24)