SLAC topics

Stanford PULSE Institute RSS feed

Researchers at the Stanford PULSE Institute watch ultrafast particle motions and chemical reactions to get a deeper understanding of matter in all its forms. Soon we’ll be able to watch even speedier electron movements that underlie all of chemistry, technology and life.

Visit PULSE website

XLEAP illustration

News Feature
For decades, materials scientists have focused on materials that are relatively balanced and unchanging – but not Yijing Huang, a postdoctoral scholar at the...
Yijing Huang at Stanford University
Photograph
PULSE graduate student Jian Chen in a laser lab at SLAC.
PULSE graduate student Jian Chen in a laser lab at SLAC.
Illustration
A SLAC-led team has invented a method, called XLEAP, that generates powerful low-energy X-ray laser pulses that are only 280 attoseconds, or billionths of...
XLEAP illustration
News Feature

Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces.

: Against a black background, thin, glowing red wires at top impinge on the hexagonal surface of a translucent mass. Small white dots travel along the edges of the surface in two directions. Within the mass, two orange cones meet at their tips.
News Feature

Researchers discover that a spot of molecular glue and a timely twist help a bacterial enzyme convert carbon dioxide into carbon compounds 20 times...

An illustration shows the pocket in an enzyme called ECR where the carbon fixing reaction takes place.
News Feature

X-ray laser experiments show that intense light distorts the structure of a thermoelectric material in a unique way, opening a new avenue for controlling...

Illustration shows two ball-and-stick molecules in pink and red separated by a blurred streak representing how the first structure is slightly deformed into the second.
News Feature

Less than a millionth of a billionth of a second long, attosecond X-ray pulses allow researchers to peer deep inside molecules and follow electrons...

Illustration of attosecond coherent electron motions.
News Feature

A better understanding of this process could inform the next generation of artificial photosynthetic systems that produce clean and renewable energy.

water droplets on plant
News Feature

Topological insulators conduct electricity on their surfaces but not through their interiors. SLAC scientists discovered that high harmonic generation produces a unique signature from...

A counterclockwise pattern of swirling arrows This pattern of arrows representing the combined spin and momentum of electrons in the surface layer of a topological insulator
News Feature

The results could lead to a better understanding of reactions with vital roles in chemistry and biology.

UED conformers
News Feature

From the invisible world of elementary particles to the mysteries of the cosmos, recipients of this prestigious award for early career scientists explore nature...

Panofsky fellows
News Feature

Edward Hohenstein, Emma McBride and Caterina Vernieri study what happens to molecules hit by light, recreate extreme states of matter like those inside stars...

Early Career Awardees 2021