SLAC topics

Energy sciences RSS feed

One of the most urgent challenges of our time is discovering how to generate the energy and products we need sustainably, without compromising the well-being of future generations by depleting limited resources or accelerating climate change. SLAC pursues this goal on many levels.

Studies of atomic-level processes

News Feature

This ‘beautiful’ herringbone-like pattern could give rise to unique features that scientists are just starting to explore.

An illustration of a dramatic, herringbone-like pattern in the atomic lattice of a newly created quantum material. Against a black background, calcium atoms are seen as light blue spheres, cobalt atoms in dark blue and oxygen atoms in red. Lines connecting the oxygen atoms represent the atomic lattice.
News Feature

Experiments visualize how 2D perovskite structures change when excited.

MeV-UED
News Feature

The SIMES investigator was cited for his singular contributions to quantum materials science.

Headshot of David Goldhaber-Gordon
News Feature

Two GEM Fellows reflect on their summer internships at SLAC and share their thoughts on representation and mentorship.

Nate Keyes and Zariq George
News Feature

The award celebrates Huang’s achievements studying atom-scale physics with fast X-ray pulses.

Yijing Huang at Stanford University
News Feature

They saw how the material finds a path to contorting and flexing to avoid being irreversibly crushed.

MEC silicon
News Feature

Waves of magnetic excitation sweep through this exciting new material whether it’s in superconducting mode or not – another possible clue to how unconventional...

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.
News Feature

Researchers discover they contain a phase of quantum matter, known as charge density waves, that’s common in other unconventional superconductors. In other ways, though...

Artist's illustration shows quantum states called superconductivity and charge density waves atop an atomic lattice of balls and sticks
News Feature

It’s a significant step in understanding these whirling quasiparticles and putting them to work in future semiconductor technologies.

A beam of light hits a semiconductor material, ejecting an electron (blue) which goes on to partner with a hole (orange) to form a whirling compound particle, the exciton.
News Feature

SLAC’s Matt Garrett and Susan Simpkins talk about tech transfer that brings innovations from the national lab to the people, including advances for medical...

Tech Transfer
News Feature

X-ray laser experiments show that intense light distorts the structure of a thermoelectric material in a unique way, opening a new avenue for controlling...

Illustration shows two ball-and-stick molecules in pink and red separated by a blurred streak representing how the first structure is slightly deformed into the second.
News Feature

The results cap 15 years of detective work aimed at understanding how these materials transition into a superconducting state where they can conduct electricity...

Conceptual illlustration showing a beam of light entering from the right and hitting a material, ejecting a sphere representing an electron