September 7, 2021

Soap study shows the value of global connections during the pandemic

Researchers at the University of Leeds deepened their understanding of a synthetic detergent without ever setting foot in the lab where their experiments took place.

By running remote experiments at the U.S. Department of Energy’s SLAC National Accelerator Laboratory, researchers at the University of Leeds have advanced their research into the complex molecular structure of soaps.

Faidat Braimoh and Thomas Barber, graduate students in the university’s School of Chemical and Process Engineering, wanted to carry out the experiments on the detergent sodium lauroyl isethionate to better understand how it crystalizes as it cools after being exposed to varying temperatures over different amounts of time. Such research could aid the design of more effective detergents, the researchers said. 

An X-ray beam line guide points toward a gold-colored piece of laboratory equipment.
Researchers from the University of Leeds sent SSRL specialized equipment, which they used to study how detergents crystalize. The closest they came to setting foot inside a hutch at SSRL was remote images like this one, which they viewed from England.

But when Braimoh, Barber and their advisers, Leeds faculty David Harbottle and Kevin Roberts, conducted experiments using local facilities, they could tell something was happening that their equipment was not quite sensitive enough to discern. They would need, they realized, to collect data more rapidly to achieve their goals.

With that in mind, the team turned to SLAC’s Stanford Synchrotron Radiation Lightsource (SSRL), one of the few facilities in the world that could collect data rapidly enough to meet the team’s needs – and where it was possible to do so without ever crossing the Atlantic. 

Plus, Harbottle said, they already had a good working relationship with SSRL scientists. “Honestly, we like the team out there. They are very supportive. In this time when we’re remote because of the pandemic, it’s been very helpful.”

So, Barber said, they packed up samples of their detergent solution along with special equipment for precisely controlling the temperature of the material and sent them off to California. 

Once the samples and equipment arrived, SSRL scientists installed them into an X-ray beamline designed to rapidly capture data on how materials change over time as conditions, such as temperature, evolve. Then, Braimoh and Barber controlled their experiments from Leeds with SSRL-designed software that allows researchers to do most of the experimental work remotely.

“The SSRL team was extremely helpful and went above and beyond to support our team,” Braimoh said. “We were given the full access and control needed to carry out the research. The level of training and support we received means we were well prepared to hit the ground running while continuing the research in a remote setting.”

Barber agreed. “Achieving the level of accuracy and precision needed to run the experiments required exceptional communication, as well as the ability to adapt to the inevitable challenges incurred by COVID-19.

“Overcoming challenges sparked by the pandemic strengthened our ability to communicate and work with SSRL to carry out research that otherwise would not have been possible with international travel restrictions.”

Note: this article is based on a release from the University of Leeds.

SSRL is a DOE Office of Science user facility. 


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Brief

The team reduced the amount of expensive platinum group metals needed to make an effective cell and found a new way to test future...

An illustration of a thin film resembling dry, cracked earth.
News Brief

The American Physical Society recognized the SLAC and Stanford physicist for decades of groundbreaking work studying the strange behavior of electrons at the interfaces...

Photo - Harold Hwang
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Brief

The team reduced the amount of expensive platinum group metals needed to make an effective cell and found a new way to test future...

An illustration of a thin film resembling dry, cracked earth.
News Brief

The American Physical Society recognized the SLAC and Stanford physicist for decades of groundbreaking work studying the strange behavior of electrons at the interfaces...

Photo - Harold Hwang
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

SLAC scientists showed that a carbon-metal compound with a perfectly placed nickel atom plays a key role in converting carbon dioxide into components for...

A multicolored diagram of a molecule.
News Feature

Researchers demonstrate a way to remove the potent greenhouse gas from the exhaust of engines that burn natural gas.  

Illustration of bubbles of methane on surface of catalyst
News Feature

The results should further our understanding of similar reactions with vital roles in chemistry, such as the production of vitamin D in our bodies.

UED transition state