May 8, 2019

In brief: Probing battery hotspots for safer energy storage

A laser technique lets researchers see how potentially dangerous growths form in batteries.

By Erika K. Carlson

Researchers are striving to make tomorrow’s batteries charge faster and store more energy. But these conveniences come with safety challenges, like more heat produced in a battery. For the first time, a team of researchers has studied the effects of tiny areas within lithium metal batteries that are much hotter than their surroundings. These hotspots, the researchers find, can make batteries grow spiky tumors of metal called dendrites that could cause short circuits, and potentially lead to fires. The team of researchers, from Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory, published their findings May 6 in Nature Communications.

By shining lasers onto the batteries, the team created microscopic temperature hotspots on electrodes. When they looked at the electrodes with a scanning electron microscope, they saw that lithium metal inside the batteries piled up on hotspots much faster than on other areas of the electrodes. If they grow long enough, these dendrites could puncture the barriers that separate positive and negative sides of batteries, causing short circuits. Short circuits like these can cause runaway temperatures that might explain why some batteries explode or catch on fire.

Microscopic images of lithium metal buildup in batteries
Microscopic images of lithium metal buildup in batteries: The hotter a hotspot inside a battery, the more lithium metal buildup it attracts and the more susceptible the battery becomes to a short circuit. These scanning electron microscope images show that buildup. For the hottest hotspot, on the right, almost all of the buildup is concentrated on the hotspot. For the coolest hotspot, left, the effect is much less extreme. (10.1038/s41467-019-09924-1)

The team hopes that their work will inspire other researchers to study batteries using this technique. It will be important to create ways to better manage batteries’ temperatures, they say, in the quest for higher energy and safer batteries.

Yangying Zhu, a postdoctoral scholar at Stanford University, and Jin Xie, a Stanford postdoc who is now a ShanghaiTech University assistant professor, were the study’s lead authors. Yi Cui, a professor at Stanford and SLAC, was the principal investigator. This work was supported by the DOE Office of Energy Efficiency and Renewable Energy. Part of the work was performed at the Stanford Nano Shared Facilities and the Stanford Nanofabrication Facility.


Citation: Yangying Zhu et al., Nature Communications, 6 May 2019 (10.1038/s41467-019-09924-1)


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Microscopic images of lithium metal buildup in batteries
Dig Deeper

Related stories

News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

The software tool sorts through messy data to reveal what’s really going on with solar panels on cloudy and sunny days.

This is a graphic representation of solar power system data. The data is processed by algorithms, which turn the data into specific power loss causes.
News Brief

SLAC and its partners have released a free, easy-to-use platform for understanding and managing electric grids. 

View of a city at twilight with a power transmission tower in foreground