April 30, 2018

SLAC and Stanford Open One of World's Most Advanced Facilities for Cryo-EM

The new facility provides revolutionary tools for exploring tiny biological machines, from viral particles to the interior of the cell.

By Glennda Chui

SLAC-Stanford Cryo-EM Facility
Dig Deeper

Related stories

News Feature

A laser compressing an aluminum crystal provides a clearer view of a material’s plastic deformation, potentially leading to the design of stronger nuclear fusion...

an abstract illustration of rippling waves made of shining dots
News Feature

The ePix series of detectors is designed to keep pace with ever more demanding experiments at SLAC and elsewhere.

SLAC’s Chris Kenney holds a 16-module
News Feature

Teaching machine learning the basics of accelerator physics is particularly useful in situations where actual data don’t exist.

SSRL
News Feature

A laser compressing an aluminum crystal provides a clearer view of a material’s plastic deformation, potentially leading to the design of stronger nuclear fusion...

an abstract illustration of rippling waves made of shining dots
News Feature

The ePix series of detectors is designed to keep pace with ever more demanding experiments at SLAC and elsewhere.

SLAC’s Chris Kenney holds a 16-module
News Feature

Teaching machine learning the basics of accelerator physics is particularly useful in situations where actual data don’t exist.

SSRL
News Brief

It can help operators optimize the performance of X-ray lasers, electron microscopes, medical accelerators and other devices that depend on high-quality beams.

Artistic representation of a neural network superimposed on an electron beam profile
News Feature

It combines human knowledge and expertise with the speed and efficiency of “smart” computer algorithms.

Accelerator Control Room
News Brief

A new understanding of the nucleation process could shed light on how the shells help microbes interact with their environments, and help people design...

Illustration of tiles forming a microbial shell