October 7, 2014

Five Years of Scientific Discoveries with SLAC's LCLS

Since the success of its inaugural experiment five years ago, thousands of scientists have used SLAC's X-ray laser to probe previously unreachable extremes in fields ranging from biology to astrophysics.

Five years ago, on the eve of the first X-ray laser experiment at the Department of Energy's SLAC National Accelerator Laboratory, Linda Young summed up her role in leading this inaugural exploration: "Wow ... Quite an honor, quite a responsibility."

Young, who studies interactions of light and matter at the scale of atoms and molecules, is director of the X-ray Science Division at Argonne National Laboratory. She chronicled her team’s pioneering experiment at the Linac Coherent Light Source (LCLS), a DOE Office of Science User Facility, in a series of blog posts in October 2009.

That first group of scientists studied what happens when intense X-ray pulses from LCLS, a billion times brighter than previous X-ray sources used for research, hit neon atoms. The researchers learned how to precisely tune the pulses to peel away atoms' outer electrons or carve out their inner electrons, creating temporarily "hollow" atoms. This process had never been explored in such detail.

Image - Infographic showing statistics on proposals, experiments and scientists at SLAC's Linac Coherent Light Source X-ray free-electron laser. (SLAC National Accelerator Laboratory)
Infographic showing statistics on proposals, experiments and scientists at SLAC's Linac Coherent Light Source X-ray free-electron laser. (SLAC National Accelerator Laboratory)

These and other results from early experiments provided a basic understanding of the extent and speed at which LCLS X-rays can damage or destroy samples – knowledge that is especially critical for producing accurate 3-D images of complex molecular structures.

"We've found out not only the basic processes that happen in atoms in response to LCLS pulses, but some of the subtleties that go along with it," Young said, reflecting on the progress made possible by experiments at LCLS.

Since that first experiment, the number of LCLS experimental stations has multiplied from one to six, and thousands more scientists have probed previously unreachable realms in fields from biology and chemistry to materials science and astrophysics. LCLS experiments have generated hundreds of articles in peer-reviewed scientific journals, with almost one-third of them appearing in prominent journals like Science and Nature.

LCLS has already achieved important milestones in several fields, mapping the structure of an enzyme relevant to a disease called African sleeping sickness and a crystallized protein embedded in living bacterial cells, detailing quantum phenomena in microscopic droplets of helium, and learning how DNA guards against damage from ultraviolet light.

Young has returned to LCLS several times, most recently last spring. It seems there is always a steady supply of new instruments and techniques to try out at LCLS, she said: "The machine scientists keep coming up with new configurations that allow us to delve a little deeper."

Importantly, the sensitivity of the X-ray detectors has increased, she noted, and her team is now studying more complex molecules. Young said improvements in computer-based modeling should also help scientists prepare for LCLS experiments and interpret LCLS-generated data.

She added, "Science at LCLS is still rapidly evolving – I don't think it has lost its flavor of being very exploratory. We're just starting to scratch the surface."

The 2014 LCLS/SSRL Annual Users’ Meeting and Workshops event runs from Oct. 7-10 at SLAC.


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

This illustration shows how the first experiment at SLAC's Linac Coherent Light Source X-ray laser stripped away electrons from neon atoms. (SLAC National Accelerator Laboratory)
The ultra-bright X-ray laser pulses of the Linac Coherent Light Source at SLAC National Accelerator Laboratory can be used to strip electrons away from atoms, creating ions with strong charges. The ability to interact with atoms is critical for making the highest resolution images of molecules and movies of chemical processes. 
Image - A photo of members of the first experimental team at SLAC's LCLS X-ray laser.
Some members of the first experimental team at SLAC's LCLS X-ray laser: (standing, left to right) Elliot Kanter, Robin Santra, Phay Ho, Stephen Pratt, Stefan Pabst and Anne-Marie March; (sitting, left to right) Linda Young, Stephen Southworth, Bertold Kraessig. (Argonne National Laboratory)
Image - Scientists in a control room monitor the first experiment at SLAC's Linac Coherent Light Source. (Courtesy Linda Young)
Scientists in a control room monitor the first experiment at SLAC's Linac Coherent Light Source. (Argonne National Laboratory)
Dig Deeper

Related stories

News Brief

With a new method that could be extended to study Earth’s core and nuclear fusion, they identify and explain jumps in the electrical conductivity...

Illustration of a short laser pulse heating a sheet of aluminum, causing it to melt and break up into droplets.
News Release

Experiments running at these higher pulse rates will allow scientists to capture ultrafast processes with greater precision, collect data more efficiently and explore phenomena...

lcls ii milestone
Feature

Researchers at SLAC are developing experimental techniques to evaluate new candidates for inertial fusion energy targets. 

a graphic in the style of graphic novel depicts four lasers converging on a spherical target, which represents an inertial fusion energy reaction
News Brief

With a new method that could be extended to study Earth’s core and nuclear fusion, they identify and explain jumps in the electrical conductivity...

Illustration of a short laser pulse heating a sheet of aluminum, causing it to melt and break up into droplets.
News Release

Experiments running at these higher pulse rates will allow scientists to capture ultrafast processes with greater precision, collect data more efficiently and explore phenomena...

lcls ii milestone
Feature

Researchers at SLAC are developing experimental techniques to evaluate new candidates for inertial fusion energy targets. 

a graphic in the style of graphic novel depicts four lasers converging on a spherical target, which represents an inertial fusion energy reaction
Feature

The technique could improve how scientists study materials and drive advancements in high-performance technologies, such as next-generation computer chips.

poincare beams
Feature

With a suite of reimagined instruments, researchers take up scientific inquiries that were out of reach just one year ago. 

Large metallic machine in a lab, featuring valves, circular bolts, and digital displays with surrounding wires and tubing.
Feature

Researchers taking the first-ever direct measurement of atom temperature in extremely hot materials inadvertently disproved a decades-old theory and upended our understanding of superheating. 

Graphic representation shows a pulse of yellow light hitting a lattice and diffracting into a spectrum of color