September 14, 2014

Study Sheds New Light on Why Batteries Go Bad

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought – and that the benefits of slow draining and charging may have been overestimated.

Menlo Park, Calif. — A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought – and that the benefits of slow draining and charging may have been overestimated.

The results challenge the prevailing view that “supercharging” batteries is always harder on battery electrodes than charging at slower rates, according to researchers from Stanford University and the Stanford Institute for Materials & Energy Sciences (SIMES) at the Department of Energy’s SLAC National Accelerator Laboratory.

They also suggest that scientists may be able to modify electrodes or change the way batteries are charged to promote more uniform charging and discharging and extend battery life. 

“The fine detail of what happens in an electrode during charging and discharging is just one of many factors that determine battery life, but it’s one that, until this study, was not adequately understood,” said William Chueh of SIMES, an assistant professor at Stanford’s Department of Materials Science and Engineering and senior author of the study.  “We have found a new way to think about battery degradation.”

The results, he said, can be directly applied to many oxide and graphite electrodes used in today’s commercial lithium ion batteries and in about half of those under development.

His team described the study September 14, 2014, in Nature Materials. The team included collaborators from Massachusetts Institute of Technology, Sandia National Laboratories, Samsung Advanced Institute of Technology America and Lawrence Berkeley National Laboratory.

 

 

In his own words: Researcher Yiyang Li describes the results of his team's experiments watching how batteries charge and drain.

 

Watching Ions in Battery Slices

One important source of battery wear and tear is the swelling and shrinking of the negative and positive electrodes as they absorb and release ions from the electrolyte during charging and discharging.

For this study scientists looked at a positive electrode made of billions of nanoparticles of lithium iron phosphate. If most or all of these particles actively participate in charging and discharging, they’ll absorb and release  ions more gently and uniformly. But if only a small percentage of particles sop up all the ions, they’re more likely to crack and get ruined, degrading the battery’s performance.

Previous studies produced conflicting views of how the nanoparticles behaved. To probe further, researchers made small coin cell batteries, charged them with different levels of current for various periods of time, quickly took them apart and rinsed the components to stop the charge/discharge process. Then they cut the electrode into extremely thin slices and took them to Berkeley Lab for examination with intense X-rays from the Advanced Light Source synchrotron, a DOE Office of Science User Facility.

New Insights on Faster Discharging

“We were able to look at thousands of electrode nanoparticles at a time and get snapshots of them at different stages during charging and discharging,” said Stanford graduate student Yiyang Li, lead author of the report. “This study is the first to do that comprehensively, under many charging and discharging conditions.”

Analyzing the data using a sophisticated model developed at MIT, the researchers discovered that only a small percentage of nanoparticles absorbed and released ions during charging, even when it was done very rapidly. But when the batteries discharged, an interesting thing happened: As the discharge rate increased above a certain threshold, more and more particles started to absorb ions simultaneously, switching to a more uniform and less damaging mode. This suggests that scientists may be able to tweak the electrode material or the process to get faster rates of charging and discharging while maintaining long battery life.

Video

The next step, Li said, is to run the battery electrodes through hundreds to thousands of cycles to mimic real-world performance. The scientists also hope to take snapshots of the battery while it’s charging and discharging, rather than stopping the process and taking it apart. This should yield a more realistic view, and can be done at synchrotrons such as ALS or SLAC’s Stanford Synchrotron Radiation Lightsource, a DOE Office of Science User Facility. Li said the group has also been working with industry to see how these findings might apply in the transportation and consumer electronics sectors.

Research funding came from the Samsung Advanced Institute of Technology Global Research Outreach Program; the School of Engineering and Precourt Institute for Energy at Stanford; the Samsung-MIT Program for Materials Design in Energy Applications; and the U.S. Department of Energy.


Citation: W. Chueh et al., Nature Materials, 14 September 2014 (10.1038/NMAT4084)

Press Office Contact: Andrew Gordon, agordon@slac.stanford.edu, (650) 926-2282


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science.

The Stanford Institute for Materials and Energy Sciences (SIMES) is a joint institute of SLAC National Accelerator Laboratory and Stanford University. SIMES studies the nature, properties and synthesis of complex and novel materials in the effort to create clean, renewable energy technologies. For more information, please visit simes.slac.stanford.edu.

SLAC National Accelerator Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

 
Photo - battery cycler
An apparatus used to charge lithium ion coin cell batteries at various rates with different levels of current at the Stanford Institute for Materials Science and Engineering (SIMES). The results indicate that the benefits of slow draining and charging may have been overestimated. (SLAC National Accelerator Laboratory)
See caption for description
A Stanford/SLAC researcher holds the positive electrode from a lithium ion coin cell battery used in experiments. Scientists charged these batteries with different levels of current for various periods of time, took them apart and used a brilliant X-ray beam to see how the charge was distributed among billions of nanoparticles in the positive electrode. (SLAC National Accelerator Laboratory)
Photo - see caption
Stanford University graduate student Yiyang Li tests lithium ion coin cell batteries at the Stanford Institute for Materials & Energy Sciences (SIMES). Li and his colleagues investigated how billions of nanoparticles in the battery’s positive electrode respond to various rates of charging and discharging. The results show that rapidly charging and draining the battery may not be as damaging as previously thought. (SLAC National Accelerator Laboratory)
X-ray microscope snapshot of nanoparticles in a battery midway through charging. Particles range from fully charged (green) to intermediate charge (orange/yellow) to drained of charge (red). The scalebar equals 500 nm. (SLAC National Accelerator Laboratory)
Dig Deeper

Related stories

News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

The software tool sorts through messy data to reveal what’s really going on with solar panels on cloudy and sunny days.

This is a graphic representation of solar power system data. The data is processed by algorithms, which turn the data into specific power loss causes.
News Brief

SLAC and its partners have released a free, easy-to-use platform for understanding and managing electric grids. 

View of a city at twilight with a power transmission tower in foreground