January 31, 2014

SIMES Simulations Track Energized Electrons to Understand Complex Materials

Jolting complex materials with bursts of energy from rapid-fire lasers can help scientists learn why some of these materials exhibit useful properties such as high-temperature superconductivity.

By Mike Ross

Jolting complex materials with bursts of energy from rapid-fire lasers can help scientists learn why some of these materials exhibit useful properties such as high-temperature superconductivity, a team led by SLAC and Stanford researchers has reported. 

The group used supercomputers to simulate how an initial laser pulse energizes electrons in the material. The electrons then trigger atomic vibrations, called phonons, that dissipate the excess energy. A split second later, a second laser pulse takes stop-action images of the electrons. Details of the electron-phonon interactions reveal important qualities that underlie the material's properties.

"We are creating a fundamentally new way of understanding and engineering complex materials based on how their electrons react when excited far from equilibrium," said the team's leader, Tom Devereaux, director of the Stanford Institute for Materials and Energy Sciences (SIMES), which is run jointly with SLAC. "Understanding – and ultimately controlling – the details of such electron behavior will help us design new materials relevant to fundamental energy science and applications." 

The team published its report in Physical Review X.

Non-equilibrium science 

Devereaux said this research is part of an emerging quest to better understand how the world works by examining more realistic situations, despite their daunting complexity.

Most science today is based on insights gained from theories and experiments involving systems that are in balance, or nearly in balance, with their surroundings, both thermally and mechanically, Devereaux said. "But most of the world around us is far more complex, and is also far from equilibrium," he said. "Virtually everything is continually responding to external stimuli or energy." He said non-equilibrium systems include complex weather systems, which respond to air, moisture and energy flows; photosynthesis, the process by which plants convert sunlight and carbon dioxide into glucose and oxygen; and even the volatile evolution of financial markets as they react to economic events. 

Image - Animation shows how a pump-probe experiment excites and images electrons. (SIMES)
This animation shows how a pump-probe experiment excites and images electrons. (SIMES)

"Current equilibrium-based theories apply to only a very small subset of the phenomena we observe around us," Devereaux said. "Even our vocabulary to describe non-equilibrium phenomena is desperately lacking."

The SLAC-led research relates to two of the DOE Office of Science's five Grand Challenges for Science and the Imagination, which aim to develop effective new scientific capabilities for studying non-equilibrium phenomena: Grand Challenge #3: How do remarkable properties of matter emerge from complex correlations of the atomic or electronic constituents, and how can we control these properties? And Grand Challenge #5: How do we characterize and control matter away – especially very far away – from equilibrium? 

Movies of a Virtual Experiment

In the study, the team simulated a typical “pump-probe” experiment, in which a near-infrared laser pulse hits a sample and triggers changes that are imaged a few quadrillionths of a second later with a different, ultraviolet laser pulse. This study was aimed at learning how the excited electrons relaxed back into a state of equilibrium by interacting with and transferring their energy to the phonons. Varying the time delay between the first and second laser pulses allowed researchers to create short, stop-action movies of the electrons' behavior. 

These simulations used a total of 1 million central-processing-unit hours at the DOE's National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory.

More Precise Calculations

"Our calculations found that the higher-energy electrons lose their energy faster than the lower-energy ones," said Michael Sentef, a SIMES postdoctoral researcher and the report's lead author. This information allows scientists to get a more precise value for the material's equilibrium self-energy (ESE), a factor that’s essential for understanding electron-phonon interactions like those thought to enable high-temperature superconductivity.

Previous techniques for determining ESE introduced errors and resulted in widely varying values for the same material, Sentef said. “Our approach shows experimentalists a direct way to get ESE without any complicating assumptions."

The team next plans to simulate how a superconductor first loses and then recovers its superconductivity when it is hit by light pulses and to study how light-matter interactions can create new states of matter that lack any known equilibrium counterparts.

In addition to SLAC, Stanford and Berkeley Lab, the research team included a scientist from Georgetown University in Washington, D.C.  Funding for this research came from the DOE’s Office of Basic Energy Sciences. The National Energy Research Scientific Computing Center is funded by the DOE Office of Science.

Citation: M. Sentef et al., Physical Review X, 26 December 2013 (10.1103/PhysRevX.3.041033).


SLAC is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, Calif., SLAC is operated by Stanford University for the U.S. Department of Energy's Office of Science. To learn more, please visit www.slac.stanford.edu.

The Stanford Institute for Materials and Energy Sciences (SIMES) is a joint institute of SLAC National Accelerator Laboratory and Stanford University. SIMES studies the nature, properties and synthesis of complex and novel materials in the effort to create clean, renewable energy technologies. For more information, please visit simes.slac.stanford.edu.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Image - Pictured is the initial, equilibrium distribution of electron energy after an intense pulse of near-infrared light. (SIMES)
The SIMES-led scientists calculated how electrons absorb and disperse energy from an intense pulse of near-infrared light, information important to understanding how some materials have special properties, such as superconductivity. Pictured is the initial, equilibrium distribution of electron energy (vertical) and momentum (horizontal: left and right from the middle). (SIMES)
arpes high tweak
Video
This short simulation video shows the energy (vertical) and momentum (horizontal: left & right from the middle) of electrons rising and falling as they absorb and disperse energy from a pulse of near-infrared light. This first of two animations shows the impact of a relatively weak pulse; the second video shows the effect of a pulse 10 times stronger. ( Credit: Michael Sentef)
Dig Deeper

Related stories

News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Wan-Lin Hu’s job is to improve the way people and artificial intelligence collaborate to run SLAC’s complex machines.

Wan-Lin Hu is seen talking with talks with accelerator systems operator Kabir Lubana in the lab’s main Accelerator Control Room.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

The software tool sorts through messy data to reveal what’s really going on with solar panels on cloudy and sunny days.

This is a graphic representation of solar power system data. The data is processed by algorithms, which turn the data into specific power loss causes.