January 31, 2013

BaBar Searches for New Physics in Invisible Decays

Scientists analyzing data from theScientists analyzing data from the BaBar experiment, which operated at SLAC between 1999 and 2008, recently published the results of a search for signs of invisible particles: exotic bits of matter that interact so weakly with ordinary stuff they left no mark in the BaBar detector.

By Lori Ann White

Scientists analyzing data from the BaBar experiment, which operated at SLAC between 1999 and 2008, recently published the results of a search for signs of invisible particles: exotic bits of matter that interact so weakly with ordinary stuff they left no mark in the BaBar detector. In the process the researchers established much better limits on possible physics not contained within the Standard Model, which is currently the best explanation for the behavior of matter and the fundamental forces that shape it. 

In this case, the BaBar scientists combed through data from the decay of neutral B mesons, which are tiny, electrically neutral particles about five and a half times more massive than the protons found in atomic nuclei. They were looking specifically for evidence – in the form of missing energy or unexplained photons – that some undetectable particle had come out.

One possibility is the neutrino, a neutral particle that made its existence known by carrying energy and momentum away from decays, causing an imbalance that challenged the laws requiring conservation of momentum and energy. But the Standard Model says the probability of neutral B mesons decaying to neutrinos is so small that the BaBar experiment could not detect such a decay in its data.

However, many theories of physics beyond the Standard Model include particles that could be created in B-meson decays and are even more stand-offish than neutrinos. Thus, they, too, would escape a detector unseen. 

One example is the neutralino. It is included in the theory of supersymmetry, which posits partners for all the Standard Model particles. Some versions of supersymmetry predict that the probability of a neutral B meson decaying to a neutralino and an antineutrino (or the same pair plus a photon) is much higher than the probability of the Standard Model decay – possibly even within reach of BaBar’s detectors. Any sign of such a decay would be considered proof of physics beyond the Standard Model.

Using software they taught to ignore everything but that possible extra photon, the researchers looked in the BaBar data for neutral B meson decays that resulted in nothing, or in only a single photon.

Ultimately BaBar didn’t capture enough data to state definitively that these unseen particles were being created, but in particle physics even what looks like a non-result can be valuable information that helps theorists home in on the correct theories. According to Fabio Anulli, a long-time BaBar researcher who is currently the experiment's physics analysis coordinator, the result is a significant improvement over previous findings and places stringent new limits on physics beyond the Standard Model.

The next step in this search for the invisible awaits another experiment such as the planned Super KEKB in Japan that will be able to generate more neutral B mesons – and perhaps the data needed to settle the question.

This result was published in the journal Physical Review D.


This article originally appeared in symmetry, a joint SLAC-Fermilab publication.


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.

Image - Cartoon elephant BaBar vanishing in suit.
Illustration: TM and (c) Nelvana, All rights reserved / Greg Stewart, SLAC
Dig Deeper

Related stories

Feature

Salleo sees strength in the big picture and minute details of the people, tools and partnerships at SLAC.

Portrait of Alberto Salleo
Feature

Cosmologists Josh Frieman and Risa Wechsler look back on the Dark Energy Survey, sharing how it’s paving the way for Rubin Observatory to dig...

Josh Frieman and Risa Wechsler
News Brief

The latest results combined weak lensing and galaxy clustering and incorporated four dark energy probes from a single experiment for the first time.

Photo of the Cerro Tololo Inter-American Observatory (CTIO) in the Chilean Andes at night.
Feature

Salleo sees strength in the big picture and minute details of the people, tools and partnerships at SLAC.

Portrait of Alberto Salleo
Feature

Cosmologists Josh Frieman and Risa Wechsler look back on the Dark Energy Survey, sharing how it’s paving the way for Rubin Observatory to dig...

Josh Frieman and Risa Wechsler
News Brief

The latest results combined weak lensing and galaxy clustering and incorporated four dark energy probes from a single experiment for the first time.

Photo of the Cerro Tololo Inter-American Observatory (CTIO) in the Chilean Andes at night.
Feature

Researchers find evidence of coexisting atomic stacking patterns in superionic water. 

Dark background with three connected elements: a blue and purple sphere on left, blue molecular spheres in center circle, and green prism on right.
News Release

First peer-reviewed paper using data from SLAC-built LSST Camera identifies an asteroid, nearly the size of eight football fields, rotating every two minutes.

Illustration showing asteroids
News Release

In the largest dataset ever collected by a dark matter detector, LUX-ZEPLIN's latest results provide the strongest constraints on low-mass WIMPs and detect boron-8...

Overhead view looking down into a white structure with dozens of orange circular components arranged radially.