LCLS-II

RSS Feed RSS Feed


New Test Bed Probes the Origin of Pulses at LCLS

It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where every X-ray laser pulse at SLAC's Linac Coherent Light Source gets its start. That tiny spot must be close to perfect or it can impair and even halt LCLS operations.

SLAC in May 2013 opened a new test facility at the Accelerator Structure Test Area (ASTA) to study the complex physics and chemistry that cause that shiny copper slab, called a cathode, to degrade over time, and to identify ways to maintain and improve its performance.

SLAC's X-ray Laser Explores Big Data Frontier

It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn heavily on the expertise of the particle physics community, where collecting and analyzing massive amounts of data are key to scientific success.

With its detectors collecting information on atomic- and molecular-scale phenomena measured in quadrillionths of a second, LCLS stores data at a rate and scale comparable to experiments at the world's most powerful particle collider, the Large Hadron Collider in Europe.

'Beam Sharing': Two Experiments with One X-ray Laser

Blue-glowing diamond crystals hold promise for expanding the research capacity of SLAC's X-ray laser by divvying up its pulses for use in separate, simultaneous experiments.

In a Feb. 6 test, scientists used perfect diamond crystals to separate ultrabright X-ray pulses at the Linac Coherent Light Source into groups of "colors," or wavelengths, for experiments spaced about 250 meters apart.