May 1, 2017

Shunned by Microbes, Organic Carbon Can Resist Breakdown in Underground Environments

A new study reveals that organic matter whose breakdown would yield only minimal energy for hungry microorganisms preferentially builds up in floodplains, illuminating a new mechanism of carbon sequestration.

Dig Deeper

Related stories

News Brief

SLAC’s SSRL helps pin down key players in the microbial production of methylmercury, a poison that can accumulate in fish.

A school of fish.
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

The method could lead to the development of new materials with tailored properties, with potential applications in fields such as climate change, quantum computing...

self driving experiments
News Brief

SLAC’s SSRL helps pin down key players in the microbial production of methylmercury, a poison that can accumulate in fish.

A school of fish.
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

The method could lead to the development of new materials with tailored properties, with potential applications in fields such as climate change, quantum computing...

self driving experiments
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

In our rapidly changing world, plants must adapt to new environments or die. Ritimukta Sarangi discusses how researchers and users at SSRL are tackling...

A graphic illustrating a plant and the many kinds of interactions it has with its environment.
News Feature

X-ray laser studies help researchers identify early steps in the freezing process to better understand how clouds make ice and their effect on climate.

supercooled water droplets