November 15, 2024

How microbes create the most toxic form of mercury

SLAC’s SSRL helps pin down key players in the microbial production of methylmercury, a poison that can accumulate in fish.

By Chris Patrick

A school of fish.
Methylmercury – concentrated in fish and then consumed by people – is a key contributor to mercury poisoning. Now, researchers have revealed new details of how microbes produce methylmercury, potentially informing remediation strategies. (Dwayne Meadows, NOAA/NMFS/OPR via Flickr)

Mercury is extraordinarily toxic, but it becomes especially dangerous when transformed into methylmercury – a form so harmful that just a few billionths of a gram can cause severe and lasting neurological damage to a developing fetus. Unfortunately, methylmercury often makes its way into our bodies through seafood – but once it’s in our food and the environment, there’s no easy way to get rid of it.

Now, leveraging high-energy X-rays at the Stanford Synchrotron Radiation Lightsource (SSRL) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory, researchers have identified an unexpected major player in methylmercury poisoning – a molecule called S-adenosyl-L-methionine (SAM).

The results, published in the Proceedings of the National Academy of Sciences, could help researchers figure out new ways to address methylmercury poisoning.

“Nobody knew how mercury is methylated biologically,” said Riti Sarangi, a senior scientist in SSRL’s Structural Molecular Biology program and co-author on the paper. “We need to understand that fundamental process before we can develop an effective methylmercury remediation strategy. This study is a step toward that.”

At issue in the new paper is a narrow but essential mystery concerning how methylmercury is produced. Scientists knew that most of the mercury we consume starts out as industrial emissions that make their way into bodies of water, where microbes convert it into methylmercury. That form concentrates in fish – and ultimately us – as it moves up the food web.

Still, researchers weren’t sure how microorganisms make methylmercury. A key confounding factor, Sarangi said, is that the protein system that converts mercury to methylmercury, called HgcAB, is present only in very small amounts in microbes, making it extremely difficult to gather and purify enough to study. It’s also extremely finicky: The slightest exposure to oxygen and light deactivates HgcAB.

In an effort spanning 10 years and collaborations across national laboratories and universities, University of Michigan professor Steve Ragsdale, his graduate student Katherine Rush, now an assistant professor at Auburn University, and postdoctoral associate Kaiyuan Zheng developed a new protocol to yield enough stable HgcAB to finally investigate how it transforms mercury into methylmercury.

“We’ve worked with a lot of very difficult proteins, but this one had everything you would not want to have in a protein if you wanted to purify it. It was very complicated,” Ragsdale said.

Once the team purified enough HgcAB, they transported the samples – cooled by liquid nitrogen and shielded from light – to SSRL for X-ray absorption spectroscopy measurements. There, SSRL associate scientist Macon Abernathy used a method called extended X-ray absorption fine structure spectroscopy to study HgcAB.

“SSRL’s X-ray spectroscopy facilities are especially equipped to study biological samples and have powerful detector systems that can resolve the extremely weak signals of ultra dilute protein samples like these,” Sarangi said.

While previous studies hypothesized that the methyl group in question came from methyltetrahydrofolate, a common methyl donor in cellular reactions, the new study finds that it was donated by SAM instead. The researchers said that the results, which narrow in on the main actors in the production of methylmercury, could aid in the development of environmental remediation strategies.

“No one has tried it yet, but perhaps analogs of SAM could be developed that could address methylmercury in the environment,” Ragsdale said.

SSRL is a DOE Office of Science user facility. The SSRL Structural Molecular Biology program is supported by the DOE Office of Science and the NIH National Institute of General Medical Sciences.

Citation: Kaiyuan Zheng et al., Proceedings of the National Academy of Sciences, 15 November 2024 (10.1073/pnas.2408086121)

For questions or comments, contact SLAC Strategic Communications & External Affairs at communications@slac.stanford.edu.


About SLAC

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Feature

AI is playing a key role in helping SLAC researchers find new galaxies and tiny neutrinos, and discover new drugs.

Diffraction pattern
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

For nearly 50 years, Hodgson has illuminated the synchrotron radiation community through his pioneering research, innovations, leadership, advocacy and mentorship at the Stanford Synchrotron...

Photo of a group of men
News Feature

AI is playing a key role in helping SLAC researchers find new galaxies and tiny neutrinos, and discover new drugs.

Diffraction pattern
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

For nearly 50 years, Hodgson has illuminated the synchrotron radiation community through his pioneering research, innovations, leadership, advocacy and mentorship at the Stanford Synchrotron...

Photo of a group of men
News Feature

Alimohamadi is being recognized for her novel integration of theoretical and experimental results to connect diverse health outcomes with cell membrane behavior.

Haleh Alimohamadi
News Brief

The results, which show how the protein adds nucleotides to the growing RNA chain, could lead to more effective medications.

Calero_group
News Brief

Wheat and other sources of gluten can spell trouble for people with the disease, but new findings could aid the development of first-ever drugs...

Close up of wheat in a field.