Photograph

Cryo-EM lamellae

Cryo-EM computer image

Lydia-Marie Joubert is pointing at the result of laminating an organic sample down to 100-300nm thickness for cryo-EM imaging. For samples which are traditionally too thick for imaging via cryogenic electron tomography (cryo-ET), a focused ion beam (FIB) can be used to produce thin lamellae (~100-300 nm) from frozen, hydrated cells containing targets of interest.

Olivier Bonin/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related images & videos