SLAC topics

Energy sciences RSS feed

One of the most urgent challenges of our time is discovering how to generate the energy and products we need sustainably, without compromising the well-being of future generations by depleting limited resources or accelerating climate change. SLAC pursues this goal on many levels.

Studies of atomic-level processes

News Feature

The award celebrates Huang’s achievements studying atom-scale physics with fast X-ray pulses.

Yijing Huang at Stanford University
Photograph

Energy science directorate (ESD) team 

Energy Sciences Directorate team at the Battery500 Quarterly Review Meeting on May 25-26 at SLAC's Main Quad.
Illustration

Illustration of how a single crystal sample of silicon deforms during shock compression on nanosecond timescales.

MEC silicon
News Feature

They saw how the material finds a path to contorting and flexing to avoid being irreversibly crushed.

MEC silicon
Past Event

Presented by Yi Cui, SLAC/Stanford University. To transform our energy sources to carbon neutrality, we need to power as much of modern society as...

public lecture art charging ahead: batteries of the future
Video

Public lecture presented by Yi Cui

public lecture art charging ahead: batteries of the future
Video
Photograph
PULSE graduate student Jian Chen in a laser lab at SLAC.   Details
PULSE graduate student Jian Chen in a laser lab at SLAC.
Illustration

Scientists use a series of magnets to transform an electron bunch into a narrow current spike which then produces a very intense attosecond X-ray...

XLEAP illustration
Illustration

The ultrafast, ultrabright X-ray pulses of the Linac Coherent Light Source (LCLS) have enabled unprecedented views of a catalyst in action, an important step...

Nilsson science cover
News Feature

Waves of magnetic excitation sweep through this exciting new material whether it’s in superconducting mode or not – another possible clue to how unconventional...

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.
Illustration

A muon, center, spins like a top within the atomic lattice of a thin film of superconducting nickelate.

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.  The top represents a fundamental particle called a muon.
News Feature

Researchers discover they contain a phase of quantum matter, known as charge density waves, that’s common in other unconventional superconductors. In other ways, though...

Artist's illustration shows quantum states called superconductivity and charge density waves atop an atomic lattice of balls and sticks