SLAC topics

Energy science RSS feed

 One of the most urgent challenges of our time is discovering how to generate the energy and products we need sustainably – in a way that doesn’t compromise the well-being of future generations by depleting limited resources or accelerating climate change.

Related Link: Energy sciences

Browse tagged content below

How electrons flow in the oxygen-evolving complex of Photosystem II.
Feature

Derek Mendez and Xueli “Sherry” Zheng aim to accelerate drug discovery and improve energy storage.

Man and woman
Feature

SLAC experts discuss how microelectronics impacts our lives and where the future lies in this Q&A.

Angelo Dragone and Paul McIntyre
Feature

Researchers at SLAC are developing experimental techniques to evaluate new candidates for inertial fusion energy targets. 

a graphic in the style of graphic novel depicts four lasers converging on a spherical target, which represents an inertial fusion energy reaction
Multimedia

His visit highlighted the breadth of our world-class research and the people and collaborations that make it possible. A key theme of the day...

U.S. Deputy Secretary of Energy Danly watches a simulation of dark matter.
Feature

Researchers taking the first-ever direct measurement of atom temperature in extremely hot materials inadvertently disproved a decades-old theory and upended our understanding of superheating. 

Graphic representation shows a pulse of yellow light hitting a lattice and diffracting into a spectrum of color
News Brief

SLAC researchers drew on advanced computation and X-ray methods to track down a water-splitting copper catalyst.

Illustration of X-ray beam interacting with the catalyst surface.
News Brief

The team watched how a strained strontium titanate membrane crossed into ferroelectric – and quantum – territory. 

A gold beam bounces off an atomic lattice made of red and blue spheres.
Feature

Using SLAC’s X-ray laser, the method revealed atomic motions in a simple catalyst, opening the door to study more complex molecules key to chemical...

Three molecules on a streaky red and blue background.
Feature

In this Q&A, Arianna Gleason discusses the technologies needed to make commercialized fusion energy a reality and how SLAC is advancing this energy frontier. 

Headshot of Arianna Gleason with graphic representation of a laser shot
Feature

Developed at SSRL, the method could help make those electrochemical conversions more robust and efficient.

A yellow beam strikes a semicircle resting atop a square wave figure.
Feature

Advanced imaging technique reveals catalyst degradation processes, addressing a key barrier to converting carbon dioxide into liquid fuel.

Walter Drisdell and Aidan Coffey of Berkeley Lab’s Chemical Sciences Division at Berkeley Lab’s LiSA research facility adjusting a pump that flows liquid through the electrochemical cell
News Brief

Nickel dopants could improve sustainable production of ethylene oxide, a chemical widely used in industrial manufacturing.

An illustration of purple balls (oxygen) gather near a nickel atom embedded in a sheet of silver.