SLAC topics

Condensed-matter physics RSS feed

Condensed matter physics is the study of substances in a solid state. It explores the structure and properties of complex materials at nanoscales, such as superconductors, diamondoids and other quantum materials.  

atomic arrangements of liquid silicates at the extreme conditions found in the core-mantle boundary.

News Feature

Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces.

: Against a black background, thin, glowing red wires at top impinge on the hexagonal surface of a translucent mass. Small white dots travel along the edges of the surface in two directions. Within the mass, two orange cones meet at their tips.
News Feature

Waves of magnetic excitation sweep through this exciting new material whether it’s in superconducting mode or not – another possible clue to how unconventional...

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.
News Feature

Researchers discover they contain a phase of quantum matter, known as charge density waves, that’s common in other unconventional superconductors. In other ways, though...

Artist's illustration shows quantum states called superconductivity and charge density waves atop an atomic lattice of balls and sticks
News Feature

Scientists discover superconductivity and charge density waves are intrinsically interconnected at the nanoscopic level, a new understanding that could help lead to the next...

A beam of light lands on a series of squiggly lines. Where the beam lands, the lines are straight.
News Feature

It’s a significant step in understanding these whirling quasiparticles and putting them to work in future semiconductor technologies.

A beam of light hits a semiconductor material, ejecting an electron (blue) which goes on to partner with a hole (orange) to form a whirling compound particle, the exciton.
News Feature

X-ray laser experiments show that intense light distorts the structure of a thermoelectric material in a unique way, opening a new avenue for controlling...

Illustration shows two ball-and-stick molecules in pink and red separated by a blurred streak representing how the first structure is slightly deformed into the second.
News Feature

Scientists discover that triggering superconductivity with a flash of light involves the same fundamental physics that are at work in the more stable states...

News Feature

Topological insulators conduct electricity on their surfaces but not through their interiors. SLAC scientists discovered that high harmonic generation produces a unique signature from...

A counterclockwise pattern of swirling arrows This pattern of arrows representing the combined spin and momentum of electrons in the surface layer of a topological insulator
News Feature

Spawned by the spins of electrons in magnetic materials, these tiny whirlpools behave like independent particles and could be the future of computing. Experiments...

Illustration of skyrmions -- little whirlpools of magnetism formed by the spins of atoms.
News Feature

High-power lasers will work in concert with the lab’s X-ray laser to dramatically improve our understanding of matter in extreme conditions.

diamond rain
News Feature

The chemically controlled chains reveal an ultrastrong attraction between electrons that may help cuprate superconductors carry electrical current with no loss at relatively high...

An illustration showing a 1D chain of carbon and oxygen molecules with red springs representing natural vibrations in their atomic lattice.
News Feature

Belopolski has made key discoveries about Weyl semimetals and topological magnets, systems in which quantum effects produce new emergent particles with exotic electronic and...

Portrait of Ilya Belopolski