June 16, 2021

SLAC physicist honored for precision particle theory research

Bernhard Mistlberger has developed new methods to make Standard Model predictions more precise than ever. The European Physical Society recently awarded him the 2021 Gribov Medal for his contributions.

By Nathan Collins

As experimental particle physicists push their research to new heights of precision, theoretical physicists must also push boundaries so their predictions keep pace. Now, Bernhard Mistlberger, a particle theorist at the Department of Energy’s SLAC National Accelerator Laboratory, has won the European Physical Society’s Gribov Medal for his efforts to do exactly that.

A white man with dark hair.
(Courtesy Bernhard Mistlberger)

The Gribov Medal, which is awarded every two years to a physicist who is up to eight years out of graduate school, went to Mistlberger this year for his efforts. “It’s a huge honor,” he said. 

"This award is a major accomplishment, and we’re thrilled to see Bernhard recognized for his contributions to particle theory," said JoAnne Hewett, SLAC's chief research officer and associate lab director for fundamental physics. 
 
It might seem that a theory as successful as the Standard Model of particle physics would make exact predictions about how particles, such as quarks, behave on the most fundamental level. In fact, theorists make those predictions based on an elaborate approximation scheme first devised in the 1940s and represented in pictures by the celebrated Feynman diagrams. While the simplest Feynman diagrams already do a good job predicting many processes, the level of precision needed to match data coming out of the Large Hadron Collider requires more precision. To reach that, physicists must use ever more complicated diagrams and ever more complicated mathematical functions, some of which even mathematicians themselves have not studied.

That's where theorists like Mistlberger come in. As a graduate student at ETH Zurich, he took on the challenge of computing, to a new level of precision, the rate at which the Higgs boson would be produced in particle colliders. Since then he has extended his work to study methods for computing certain complex Feynman diagrams involving repeated interactions between fundamental particles such as quarks and vector bosons, which carry the force that holds quarks together inside protons and neutrons. 

The research, Mistlberger said, requires different ideas, techniques and algorithms than worked in the past: “There are mathematical beasts out there that still need to be tamed and understood.”

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Brief

Vera C. Rubin Observatory’s fast-moving telescope and huge digital camera will illuminate the faint glow of free-floating stars within galaxy clusters, providing unprecedented insight...

A smattering of hundreds of galaxies of different shapes and sizes against a black background. Semi-opaque teal blobs surround and connect many of the galaxies.
News Feature

Four engineers discuss their journeys to working at SLAC and counsel those following in their footsteps.

Ashley fellows 2023
News Feature

Three SLAC scientists explain what they do to ensure the world's largest digital camera for astronomy is ready for the big time.

A digital sensor array is visible through a large camera lens inside a white room.
News Brief

Vera C. Rubin Observatory’s fast-moving telescope and huge digital camera will illuminate the faint glow of free-floating stars within galaxy clusters, providing unprecedented insight...

A smattering of hundreds of galaxies of different shapes and sizes against a black background. Semi-opaque teal blobs surround and connect many of the galaxies.
News Feature

Four engineers discuss their journeys to working at SLAC and counsel those following in their footsteps.

Ashley fellows 2023
News Feature

Three SLAC scientists explain what they do to ensure the world's largest digital camera for astronomy is ready for the big time.

A digital sensor array is visible through a large camera lens inside a white room.
Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
News Feature

Line intensity mapping measurements taken with a new instrument will allow astrophysicists to study galaxies too far away for traditional methods.

The South Pole Telescope
News Feature

Leora Dresselhaus-Marais, Claudio Emma,  Bernhard Mistlberger and Johanna Nelson Weker will pursue cutting-edge research into decarbonizing steel production, theoretical physics, generating more intense particle...

This photo shows all four recipients from SLAC and Stanford of the DOE's 2023 Early Career Award