June 16, 2021

SLAC physicist honored for precision particle theory research

Bernhard Mistlberger has developed new methods to make Standard Model predictions more precise than ever. The European Physical Society recently awarded him the 2021 Gribov Medal for his contributions.

By Nathan Collins

As experimental particle physicists push their research to new heights of precision, theoretical physicists must also push boundaries so their predictions keep pace. Now, Bernhard Mistlberger, a particle theorist at the Department of Energy’s SLAC National Accelerator Laboratory, has won the European Physical Society’s Gribov Medal for his efforts to do exactly that.

A white man with dark hair.
(Courtesy Bernhard Mistlberger)

The Gribov Medal, which is awarded every two years to a physicist who is up to eight years out of graduate school, went to Mistlberger this year for his efforts. “It’s a huge honor,” he said. 

"This award is a major accomplishment, and we’re thrilled to see Bernhard recognized for his contributions to particle theory," said JoAnne Hewett, SLAC's chief research officer and associate lab director for fundamental physics. 
 
It might seem that a theory as successful as the Standard Model of particle physics would make exact predictions about how particles, such as quarks, behave on the most fundamental level. In fact, theorists make those predictions based on an elaborate approximation scheme first devised in the 1940s and represented in pictures by the celebrated Feynman diagrams. While the simplest Feynman diagrams already do a good job predicting many processes, the level of precision needed to match data coming out of the Large Hadron Collider requires more precision. To reach that, physicists must use ever more complicated diagrams and ever more complicated mathematical functions, some of which even mathematicians themselves have not studied.

That's where theorists like Mistlberger come in. As a graduate student at ETH Zurich, he took on the challenge of computing, to a new level of precision, the rate at which the Higgs boson would be produced in particle colliders. Since then he has extended his work to study methods for computing certain complex Feynman diagrams involving repeated interactions between fundamental particles such as quarks and vector bosons, which carry the force that holds quarks together inside protons and neutrons. 

The research, Mistlberger said, requires different ideas, techniques and algorithms than worked in the past: “There are mathematical beasts out there that still need to be tamed and understood.”

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Feature

LSST Camera images provide the inspiration for artist Lennart Lahuis’s “Astromelancholia.”

Broccoli
News Feature

The Stanford Board of Trustees held its first meeting of the 2022-23 academic year Oct. 17-18. Trustees toured the SLAC National Accelerator Laboratory and...

Aerial photo of SLAC research yard
News Feature
Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and...
MEC silicon
News Feature

LSST Camera images provide the inspiration for artist Lennart Lahuis’s “Astromelancholia.”

Broccoli
News Feature

The Stanford Board of Trustees held its first meeting of the 2022-23 academic year Oct. 17-18. Trustees toured the SLAC National Accelerator Laboratory and...

Aerial photo of SLAC research yard
News Feature
Silicon, an element abundant in Earth’s crust, is currently the most widely used semiconductor material and is important in fields like engineering, geophysics and...
MEC silicon
News Feature
VIA Stanford News

The power of awe and the cosmos

A cosmologist, cultural historian, and neurosurgeon discuss how outer space and otherworldly phenomena can inspire discovery across disciplines and bring people together.

Image of galaxies of different colors and varied, warped shapes.
News Feature

They’ll work on experiments that search for dark matter particles and exotic neutrino decays that could help explain why there’s more matter than antimatter...

side-by-side portraits of a man and a woman
News Feature

SLAC researchers contributed to the design, construction, testing and analysis of the experiment, which has already put the tightest bounds yet on a popular...

Bubble-like glass lenses inside a white cylindrical apparatus.