February 11, 2020

Atom or noise? New method helps cryo-EM researchers tell the difference

Cryogenic electron microscopy can in principle make out individual atoms in a molecule, but distinguishing the crisp from the blurry parts of an image can be a challenge. A new mathematical method may help.

By Nathan Collins

Cryogenic electron microscopy, or cryo-EM, has reached the point where researchers could in principle image individual atoms in a 3D reconstruction of a molecule – but just because they could see those details doesn’t always mean they do. Now, researchers at the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University have proposed a new way to quantify how accurate such reconstructions are and, in the process, how confident they can be in their molecular interpretations. The study was published February 10 in Nature Methods.

Cryo-EM works by freezing biological molecules which can contain thousands of atoms so they can be imaged under an electron microscope. By aligning and combining many two-dimensional images, researchers can compute three-dimensional maps of an entire molecule, and this technique has been used to study everything from battery failure to the way viruses invade cells. However, an issue that has been hard to solve is how to accurately assess the true level of detail or resolution at every point in such maps and in turn determine what atomic features are truly visible or not.

An overall image of the apoferritin molecule (left) and a small section (right)
A cryo-EM map of the molecule apoferritin (left) and a detail of the map showing the atomic model researchers use to construct Q-scores. (Image courtesy Greg Pintilie)

Wah Chiu, a professor at SLAC and Stanford, Grigore Pintilie, a computational scientist in Chiu’s group, and colleagues devised the new measures, known as Q-scores, to address that issue. To compute Q-scores, scientists start by building and adjusting an atomic model until it best matches the corresponding cryo-EM derived 3D map. Then, they compare the map to an idealized version in which each atom is well-resolved, revealing to what degree the map truly resolves the atoms in the atomic model.

The researchers validated their approach on large molecules, including a protein called apoferritin that they studied in the Stanford-SLAC Cryo-EM Facilities. Kaiming Zhang, another research scientist in Chiu’s group, produced 3D maps close to the highest resolution reached to date – up to 1.75 angstrom, less than a fifth of a nanometer. Using such maps, they showed how Q-scores varied in predictable ways based on overall resolution and on which parts of a molecule they were studying. Pintilie and Chiu say they hope Q-scores will help biologists and others using cryo-EM better understand and interpret the 3D maps and resulting atomic models. 

The study was performed in collaboration with researchers from Stanford’s Department of Bioengineering. Molecular graphics and analysis were performed using the University of California, San Francisco’s Chimera software package. The project was funded by the National Institutes of Health.

Citation: Grigore Pintilie et al., Nature Methods, February 10, 2020 (10.1038/s41592-020-0731-1)


Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Brief

SLAC’s SSRL helps pin down key players in the microbial production of methylmercury, a poison that can accumulate in fish.

A school of fish.
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

For nearly 50 years, Hodgson has illuminated the synchrotron radiation community through his pioneering research, innovations, leadership, advocacy and mentorship at the Stanford Synchrotron...

Photo of a group of men
News Brief

SLAC’s SSRL helps pin down key players in the microbial production of methylmercury, a poison that can accumulate in fish.

A school of fish.
News Feature

An associate scientist at SSRL, Richardson studies plant growth to find ways to enhance nutrient uptake in plants, especially in challenging conditions – such...

Jocelyn Richardson
News Feature

For nearly 50 years, Hodgson has illuminated the synchrotron radiation community through his pioneering research, innovations, leadership, advocacy and mentorship at the Stanford Synchrotron...

Photo of a group of men
News Feature

Alimohamadi is being recognized for her novel integration of theoretical and experimental results to connect diverse health outcomes with cell membrane behavior.

Haleh Alimohamadi
News Brief

The results, which show how the protein adds nucleotides to the growing RNA chain, could lead to more effective medications.

Calero_group
News Brief

Wheat and other sources of gluten can spell trouble for people with the disease, but new findings could aid the development of first-ever drugs...

Close up of wheat in a field.