January 18, 2017

Meet the Director of SSRL: Kelly Gaffney

Kelly Gaffney is the director of SSRL, SLAC's synchrotron that produces extremely bright x-rays as a resource for researchers to study our world at the atomic and molecular level of energy production, environmental remediation, nanotechnology, new materials and medicine.

Dig Deeper

Related stories

News Feature

Teams at SLAC installed new experimental hutches with cutting-edge instruments that will harness the upgraded facility’s new capabilities and expand the breadth of research...

SLAC's linac at sunrise, looking east.
News Feature

LaserNetUS funding will allow scientists to explore fundamental plasma science and inertial fusion energy research and technology.

Matter in Extreme Conditions (MEC) Hutch 6, located in the LCLS Far Experimental Hall.
News Feature

New research has implications for understanding Earth's evolution, interpreting unusual seismic signals and the study of exoplanets.

Illustration of earth with laser
News Feature

Teams at SLAC installed new experimental hutches with cutting-edge instruments that will harness the upgraded facility’s new capabilities and expand the breadth of research...

SLAC's linac at sunrise, looking east.
News Feature

LaserNetUS funding will allow scientists to explore fundamental plasma science and inertial fusion energy research and technology.

Matter in Extreme Conditions (MEC) Hutch 6, located in the LCLS Far Experimental Hall.
News Feature

New research has implications for understanding Earth's evolution, interpreting unusual seismic signals and the study of exoplanets.

Illustration of earth with laser
News Feature

The award recognizes Driver’s contribution toward attosecond X-ray capabilities.

A portrait of Taran Driver.
News Feature

An international team has uncovered details about the formation of DNA's building blocks, paving the way  for potential medical and therapeutic applications.

radical
News Feature

Scientists developed a new method to unlock the secrets of RNA. The implications are wide-reaching, from better understanding diseases to designing new therapeutics. 

CXI hutch