Illustration

Perovskites

Perovskites’ unusual response to light could explain the high efficiency of these next-generation solar cell materials.

Greg Stewart/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

Molecular movie-making is both an art and a science; the results let us watch how nature works on the smallest scales.

Molecular movie frames for the light-triggered transition of the ring-shaped 1,3-CHD molecule.

SLAC’s ultrafast “electron camera” reveals unusual atomic motions that could be crucial for the efficiency of next-generation perovskite solar cells.

UED Perovskites
Dig Deeper

Related images & videos