Illustration

2d superconductivity puddles

Illustration of a 2D superconducting state emerging in a 3D superconductor

SLAC and Stanford scientists observed puddles of 2D superconducting behavior emerging from a 3D unconventional superconductor, which conducts electricity with 100% efficiency at unusually high temperatures. Their study suggests that this so-called "emergent" behavior may be how 3D superconductors reorganize themselves just before undergoing an abrupt shift into an insulating state, where electrons are confined to their home atoms and can’t move around at all.

Greg Stewart/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

It’s an example of how surprising properties can spontaneously emerge in complex materials – a phenomenon scientists hope to harness for novel technologies.

Illustration of a 2D superconducting state emerging in a 3D superconductor