Illustration

Muonium atom

muonium

In this artist's depiction of how experimentalists could create true muonium, an electron (blue) and a positron (red) collide, producing a virtual photon (green) and then a muonium atom, made of a muon (small yellow) and an anti-muon (small purple). The muonium atom then decays back into a virtual photon and then a positron and an electron. Overlaying this process is a figure indicating the structure of the muonium atom: one muon (large yellow) and one anti-muon (large purple).

Terry Anderson/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

True muonium, a long-theorized but never-seen atom, might be observed in future experiments, thanks to recent theoretical work by researchers at the Department of Energy's SLAC National Accelerator Laboratory and Arizona State University.

muonium