SLAC topics

Linac Coherent Light Source (LCLS) RSS feed

The Linac Coherent Light Source at SLAC, the world’s first hard X-ray free-electron laser, takes X-ray snapshots of atoms and molecules at work, revealing fundamental processes in materials, technology and living things.

Visit LCLS website

Rooftop view of Linac Coherent Light Source (LCLS)

News Feature

Molecular movie-making is both an art and a science; the results let us watch how nature works on the smallest scales.

Molecular movie frames for the light-triggered transition of the ring-shaped 1,3-CHD molecule.
News Feature

The annual conference for scientists who conduct research at SLAC’s light sources engaged about 350 researchers in talks, workshops and discussions.

Users meeting
News Feature

She is recognized for two decades of innovation and excellence at the Stanford Synchrotron Radiation Lightsource.

Aina Cohen
News Feature

A new study shows how soccer ball-shaped molecules burst more slowly than expected when blasted with an X-ray laser beam.

Buckyballs
News Feature

Early career award recognizes Mitrano’s work in ultrafast X-ray scattering.

Matteo Mitrano
News Feature

The studies could lead to a new understanding of how high-temperature superconductors operate.

fluctuating charge stripes
News Feature

The SLAC scientists will each receive $2.5 million for their research on fusion energy and advanced radiofrequency technology.

Gleason-Gamzina-ECA2019
News Feature

The technique can be used to study molecular phenomena and the forming and breaking of chemical bonds.

vibrating molecules
News Feature

Combined with the lab’s LCLS X-ray laser, it’ll provide unprecedented atomic views of some of nature’s speediest processes.

Alex Reid, ultrafast electron diffraction (UED)
News Feature

Particle accelerators are some of the most complicated machines in science.

News Feature

Physicist Tor Raubenheimer explores the world by climbing rocks and designing particle accelerators.

Photo: Tor Raubenheimer, accelerator physicist
News Feature

Experiments at SLAC’s X-ray laser reveal in atomic detail how two distinct liquid phases in these materials enable fast switching between glassy and crystalline...

Diagram of material switching between glassy and crystalline states