SLAC topics

LCLS-II RSS feed

LCLS-II will be a transformative tool for energy science, qualitatively changing the way that X-ray imaging, scattering and spectroscopy can be used to study how natural and artificial systems function. It will produce X-ray pulses that are 10,000 times brighter, on average, than those of LCLS and that arrive up to a million times per second.

Related Link:
LCLS-II

Illustration of SLAC's cryoplant refrigerator.

Press Release

With up to a million X-ray flashes per second, 8,000 times more than its predecessor, it transforms the ability of scientists to explore atomic-scale...

LCLS-II first light
Photograph
SLAC staff gather in the accelerator control room to celebrate first light produced by the LCLS-II project’s pioneering superconducting accelerator.
First light celebration
Illustration
SLAC’s newly upgraded Linac Coherent Light Source (LCLS) X-ray free-electron laser (XFEL) successfully produced its first X-rays, creating unparalleled capabilities that will usher in...
LCLS-II first light
News Feature

They used synthetic diamond crystals as mirrors to make X-ray pulses run laps inside a vacuum chamber, demonstrating a key process needed for future...

Two scientists in a control room full of computer monitors that allow them to adjust diamond mirrors in their CBXFEL experiment
News Feature

The facility is now one step away from releasing an unprecedented stream of ultra-bright X-rays.

This is a graphic representation of electron bunches travelling through SLAC's linear accelerator.
news collection

An upgrade to SLAC’s renowned Linac Coherent Light Source will allow it to deliver X-ray laser beams that are 10,000 times brighter with pulses that arrive up to a million times per second.

collage of LCLS-II milestones
Press Release

After decades of effort, scientists have finally seen the process by which nature creates the oxygen we breathe using SLAC’s X-ray laser.

Photosystem II
News Feature

Once built, the system could produce fast X-ray pulses ten times more powerful than ever before.

illustration of an electron beam traveling through a niobium cavity – a key component of SLAC’s future LCLS-II X-ray laser.
News Feature

A machine learning algorithm automatically extracts information to speed up – and extend – the study of materials with X-ray pulse pairs.

A pattern of red and yellow dots surrounded by a ring of blue dots on a black background.
News Feature

The Stanford Board of Trustees held its first meeting of the 2022-23 academic year Oct. 17-18. Trustees toured the SLAC National Accelerator Laboratory and...

Aerial photo of SLAC research yard
Illustration
When light drives electron transfer in a molecular complex, the surrounding solvent molecules also rapidly move.
When light drives electron transfer in a molecular complex, the surrounding solvent molecules also rapidly move.
Illustration

Scientists use a series of magnets to transform an electron bunch into a narrow current spike which then produces a very intense attosecond X-ray...

XLEAP illustration