Illustration

Exposing the material to a magnetic field

Exposing the material to a magnetic field

To study superconducting materials in their “normal,” non-superconducting state, scientists usually switch off superconductivity by exposing the material to a magnetic field, left. SLAC scientists discovered that turning off superconductivity with a flash of light, right, produces a normal state with very similar fundamental physics that is also unstable and can host brief flashes of room-temperature superconductivity. These results open a new path toward producing room-temperature superconductivity that’s stable enough for practical devices.

Greg Stewart/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

Scientists discover that triggering superconductivity with a flash of light involves the same fundamental physics that are at work in the more stable states needed for devices, opening a new path toward producing room-temperature superconductivity.

Exposing the material to a magnetic field