Illustration

Superconductivity signature traits

An illustration shows four icons representing signatures of the superconducting transition: carrying electrical current without resistance, expelling magnetic fields, a unique response to heating and electrons pairing up and condensing.

How can you tell if a material is a superconductor? Four classic signatures are illustrated here. Left to right: 1) It conducts electricity with no resistance when chilled below a certain temperature. 2) It expels magnetic fields, so a magnet placed on top of it will levitate. 3) Its heat capacity – the amount of heat needed to raise its temperature by a given amount – shows a distinctive anomaly as the material transitions to a superconducting state. 4) And at that same transition point, its electrons pair up and condense into a sort of electron soup that allows current to flow freely. Now experiments at SLAC and Stanford have captured this fourth signature in cuprates, which become superconducting at relatively high temperatures, and shown that it occurs in two distinct steps and at very different temperatures. Knowing how that happens in fine detail suggests a new and very practical direction for research into these enigmatic materials.

Greg Stewart, SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC media relations: 

media@slac.stanford.edu 
 

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.