SLAC topics

Linac Coherent Light Source (LCLS) RSS feed

The Linac Coherent Light Source at SLAC, the world’s first hard X-ray free-electron laser, takes X-ray snapshots of atoms and molecules at work, revealing fundamental processes in materials, technology and living things.

Visit LCLS website

Rooftop view of Linac Coherent Light Source (LCLS)

News Feature

The former SLAC and Stanford researcher will be recognized during a SLAC conference next month for her work in studying nanoscale magnetic and electronic...

Image - Roopali Kukreja, working in a laboratory at the University of California, San Diego. (Courtesy of Roopali Kukreja)
News Feature

Using SLAC's X-ray laser, researchers have for the first time directly observed myoglobin move within quadrillionths of a second after a bond breaks and...

Image - Ilme Schlichting (SLAC National Accelerator Laboratory)
News Feature

A major international effort at SLAC is focused on improving our views of intact viruses, living bacteria and other tiny samples using the brightest...

Researchers monitor the performance of a single particle imaging experiment
News Feature

In a first-of-its-kind experiment, scientists got a textbook-worthy result that may change the way matter is probed at X-ray free-electron lasers.

The Linac Coherent Light Source X-ray laser at SLAC
Press Release

Scientists have revealed never-before-seen details of how our brain sends rapid-fire messages between its cells using SLAC's X-ray laser.

Image - This illustration shows a protein complex at work in brain signaling. Its structure, which contains joined protein complexes known as SNARE and synaptotagmin-1, is shown in the foreground. (SLAC National Accelerator Laboratory)
News Feature

A researcher interviewed SLAC and Stanford administrators, scientists and Nobel laureates and sifted through archival materials to better understand the drivers for change in...

Image - Olof Hallonsten
Press Release

A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.

 Illustration shows arrestin (yellow), an important type of signaling protein, while docked with rhodopsin (orange).
Press Release

Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled.

Image - This illustration shows shape changes that occur in quadrillionths-of-a-second intervals in a ring-shaped molecule that was broken open by light. (SLAC)
News Feature

The fellowship will support their research on new capabilities for the lab's X-ray free-electron lasers and new telescope technology to look for signs of...

Zeeshan Ahmed and Agostino Marinelli, SLAC's 2015 Panofsky Fellows
News Feature

SLAC visiting scientist and consulting professor Claudio Pellegrini is honored for contributions to free-electron laser science.

Image - Claudio Pellegrini stands in the Linac Coherent Light Source Beam Transport Hall. The accelerated electron beam passes through here to the Undulator Hall, where electron bunches generate X-rays. (Michelle McCarron)
News Feature

An experiment at SLAC’s X-ray laser provides new insight into the ultrafast motions of a muscle protein in a basic biochemical reaction.

Computerized rendering of 3-D structure of myoglobin. The jagged green line represents a pulse of la
News Feature

Anne Sakdinawat, a SLAC scientist, has been selected to receive a grant to advance her work in producing and using new types of X-ray...

Image - Anne Sakdinawat (SLAC National Accelerator Laboratory)