Linac Coherent Light Source (LCLS)

RSS Feed RSS Feed

New Test Bed Probes the Origin of Pulses at LCLS

It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where every X-ray laser pulse at SLAC's Linac Coherent Light Source gets its start. That tiny spot must be close to perfect or it can impair and even halt LCLS operations.

SLAC in May 2013 opened a new test facility at the Accelerator Structure Test Area (ASTA) to study the complex physics and chemistry that cause that shiny copper slab, called a cathode, to degrade over time, and to identify ways to maintain and improve its performance.

All Systems Go: A New High-energy Record for LCLS

John Hill watched with eager anticipation as controllers ramped up the power systems driving SLAC's X-ray laser in an attempt to achieve the record high energies needed to make his experiment a runaway success.

The Brookhaven National Laboratory scientist was the leader of a research team that had come from Illinois, Germany, Switzerland and England to use the Linac Coherent Light Source (LCLS), and this was their last day. They would get only one shot.

SLAC's X-ray Laser Explores Big Data Frontier

It's no surprise that the data systems for SLAC's Linac Coherent Light Source X-ray laser have drawn heavily on the expertise of the particle physics community, where collecting and analyzing massive amounts of data are key to scientific success.

With its detectors collecting information on atomic- and molecular-scale phenomena measured in quadrillionths of a second, LCLS stores data at a rate and scale comparable to experiments at the world's most powerful particle collider, the Large Hadron Collider in Europe.

X-ray Laser Brings Gold Exploration to the Nanoscale

Pushing gold exploration to the nanoscale, scientists used SLAC's Linac Coherent Light Source X-ray laser to produce a series of 3-D images that detail a ringing effect in tiny gold crystals. The technique provides a unique window for studying why smaller is better for some specialized materials, including those used in chemical reactions and electronic components, for example.

X-ray Laser Brings Cellular Messengers into Focus

Last year's Nobel Prize in Chemistry – shared by Stanford School of Medicine Professor Brian Kobilka and Robert Lefkowitz of Duke University – recognized groundbreaking research in G protein-coupled receptors (GPCRs). GPCRs are embedded in cell membranes. They interact with signaling molecules outside of cells and trigger responses within cells.

Sharper Images for Extreme LCLS Experiments

An imaging technique conceived 50 years ago has been successfully demonstrated at SLAC's Linac Coherent Light Source, where it is expected to improve results in a range of experiments, including studies of extreme states of matter formed by shock waves.

X-ray Laser Pulses in Two Colors

SLAC researchers have demonstrated for the first time how to produce pairs of X-ray laser pulses in slightly different wavelengths, or colors, with finely adjustable intervals between them – a feat that will allow them to watch molecular motion as it unfolds and explore other ultrafast processes.