SLAC topics

X-ray science RSS feed

X-ray studies at SLAC facilities help scientists understand the fundamental workings of nature by probing matter in atomic detail.

atoms forming a tentative bond

Press Release

Scientists have revealed never-before-seen details of how our brain sends rapid-fire messages between its cells using SLAC's X-ray laser.

Image - This illustration shows a protein complex at work in brain signaling. Its structure, which contains joined protein complexes known as SNARE and synaptotagmin-1, is shown in the foreground. (SLAC National Accelerator Laboratory)
News Feature

A SLAC/Stanford manufacturing technique could help make inexpensive polymer-based solar cells an attractive alternative to silicon-crystal wafers.

News Feature

SUNCAT and SIMES researchers have received funding from Stanford's Global Climate and Energy Project to support research related to generating renewable fuels.

News Feature

Scientists and engineers in South Korea will soon be using SLAC’s signature high-power radio-frequency amplifiers, called XL4 klystrons, to get the most out of...

News Feature

A researcher interviewed SLAC and Stanford administrators, scientists and Nobel laureates and sifted through archival materials to better understand the drivers for change in...

Image - Olof Hallonsten
Press Release

A biomedical breakthrough reveals never-before-seen details of the human body’s cellular switchboard that regulates sensory and hormonal responses.

 Illustration shows arrestin (yellow), an important type of signaling protein, while docked with rhodopsin (orange).
News Feature

A new design tested in experiments at SLAC National Accelerator Laboratory could improve plastic solar panel materials.

Scientists devised a new arrangement of solar cell ingredients, with bundles of polymer donors (green rods) and neatly organized carbon molecules, also known as fullerenes or buckyballs, serving as acceptors (purple, tan). (UCLA)
Press Release

Scientists for the first time tracked ultrafast structural changes, captured in quadrillionths-of-a-second steps, as ring-shaped gas molecules burst open and unraveled.

Image - This illustration shows shape changes that occur in quadrillionths-of-a-second intervals in a ring-shaped molecule that was broken open by light. (SLAC)
News Feature

The fellowship will support their research on new capabilities for the lab's X-ray free-electron lasers and new telescope technology to look for signs of...

Zeeshan Ahmed and Agostino Marinelli, SLAC's 2015 Panofsky Fellows
News Feature

SLAC visiting scientist and consulting professor Claudio Pellegrini is honored for contributions to free-electron laser science.

Image - Claudio Pellegrini stands in the Linac Coherent Light Source Beam Transport Hall. The accelerated electron beam passes through here to the Undulator Hall, where electron bunches generate X-rays. (Michelle McCarron)
News Feature

An experiment at SLAC’s X-ray laser provides new insight into the ultrafast motions of a muscle protein in a basic biochemical reaction.

Computerized rendering of 3-D structure of myoglobin. The jagged green line represents a pulse of la
News Feature

Anne Sakdinawat, a SLAC scientist, has been selected to receive a grant to advance her work in producing and using new types of X-ray...

Image - Anne Sakdinawat (SLAC National Accelerator Laboratory)