Illustration

Depiction of a tiny pore in the crystalline shell of an ammonia-eating archaea microbe

Artist's depiction of a tiny pore in an archaea's crystalline shell

An artist’s depiction of a tiny pore in the crystalline shell of an ammonia-eating archaea microbe; surrounding proteins are shown in blue. The pore’s negative charge attracts ammonium ions from the environment, which interact with an enzyme complex (yellow) to produce all the energy the microbe requires. 

Greg Stewart/SLAC National Accelerator Laboratory

All content is © SLAC National Accelerator Laboratory. Downloading, displaying, using or copying of any visuals in this archive indicates your agreement to be bound by SLAC's media use guidelines
 

For questions, please contact SLAC’s media relations manager: 
Manuel Gnida 
mgnida@slac.stanford.edu 
(650) 926-2632 
 

SLAC is a vibrant multiprogram laboratory that explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by scientists around the globe. With research spanning particle physics, astrophysics and cosmology, materials, chemistry, bio- and energy sciences and scientific computing, we help solve real-world problems and advance the interests of the nation.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Featured in

Related news

Tiny pores in the shells of archaea microbes attract ammonium ions that are their sole source of energy, allowing them to thrive where this food is so scarce that scientists can’t even detect it.

Artist's depiction of a tiny pore in an archaea's crystalline shell
Dig Deeper

Related images & videos