SLAC topics

Stanford PULSE Institute RSS feed

Researchers at the Stanford PULSE Institute watch ultrafast particle motions and chemical reactions to get a deeper understanding of matter in all its forms. Soon we’ll be able to watch even speedier electron movements that underlie all of chemistry, technology and life.

Visit PULSE website

XLEAP illustration

News Feature

The results could lead to a better understanding of reactions with vital roles in chemistry and biology.

UED conformers
News Feature

From the invisible world of elementary particles to the mysteries of the cosmos, recipients of this prestigious award for early career scientists explore nature...

Panofsky fellows
News Feature

Edward Hohenstein, Emma McBride and Caterina Vernieri study what happens to molecules hit by light, recreate extreme states of matter like those inside stars...

Early Career Awardees 2021
News Feature

This new understanding could aid the development of more efficient clean energy sources.

electron transfer
News Feature

Just as pressing a guitar string produces a higher pitch, sending laser light through a material can shift it to higher energies and higher...

High harmonic generation in a topological insulator.
News Feature

These fleeting disruptions, seen for the first time in lead hybrid perovskites, may help explain why these materials are exceptionally good at turning sunlight...

An illustration shows polarons as bubbles of distortion in a perovskite lattice
Animation
As this animation shows, polaronic distortions start very small and rapidly expand outward in all directions to a diameter of...
Animation of polaronic distortions expanding in an atomic lattice
Illustration

An illustration shows polarons – fleeting distortions in a material’s atomic lattice ––in a promising next-generation energy material, lead hybrid perovskite.

Polarons, bubbles of distortion in a perovskite lattice.
News Feature

SLAC and Stanford partner with two Illinois universities to create the Center for Quantum Sensing and Quantum Materials, which aims to unravel mysteries associated...

Illustration of quantum processes

Cryan is an investigator with the Stanford PULSE Institute at SLAC, while Marsden is an associate professor of pediatrics and of bioengineering at Stanford.

Portrait of James Cryan and Alison Marsden
News Feature

Researchers demonstrate a new ability to drive and track electronic motion, which is crucial to understanding the role of electrons in chemical processes and...

attoseconds
News Feature

The prestigious awards provide at least $2.5 million over five years in support of their work in understanding photochemical reactions and improving accelerator beams.

SLAC staff scientists Amy Cordones-Hahn and Brendan O'Shea