SLAC topics

Stanford Institute for Materials & Energy Sciences (SIMES) RSS feed

SIMES researchers study complex, novel materials that could transform the energy landscape by making computing much more efficient or transmitting power over long distances with no loss, for instance.

Visit SIMES website

Polarons, bubbles of distortion in a perovskite lattice.

News Feature

This ‘beautiful’ herringbone-like pattern could give rise to unique features that scientists are just starting to explore.

An illustration of a dramatic, herringbone-like pattern in the atomic lattice of a newly created quantum material. Against a black background, calcium atoms are seen as light blue spheres, cobalt atoms in dark blue and oxygen atoms in red. Lines connecting the oxygen atoms represent the atomic lattice.
Illustration

This illustration depicts a herringbone-like pattern in the atomic lattice of a quantum material created by researchers at SLAC and Stanford.

An illustration of a dramatic, herringbone-like pattern in the atomic lattice of a newly created quantum material. Against a black background, calcium atoms are seen as light blue spheres, cobalt atoms in dark blue and oxygen atoms in red. Lines connecting the oxygen atoms represent the atomic lattice.
News Feature

The SIMES investigator was cited for his singular contributions to quantum materials science.

Headshot of David Goldhaber-Gordon
News Feature

If scaled up successfully, the team's new system could help answer questions about certain kinds of superconductors and other unusual states of matter.

A grayscale image showing the outlines of a complex electrical device.
news collection

Two of the most urgent challenges of our time – clean energy and sustainability – require investigation at the atomic level.

Aerial image of workers installing solar panels on a home.
Video

SIMES researcher Danfeng Li explains the delicate ‘Jenga chemistry’ behind making a new nickel oxide material, the first in a potential new family of...

Stillframe of Jenga chemistry video
Video
Past Event

Presented by Yi Cui, SLAC/Stanford University. To transform our energy sources to carbon neutrality, we need to power as much of modern society as...

public lecture art charging ahead: batteries of the future
Photograph
Stanford Institute for Materials and Energy Sciences (SIMES) research conducted at Stanford Synchrotron Radiation Lightsource (SSRL).
Stanford Institute for Materials and Energy Sciences (SIMES) research conducted at Stanford Synchrotron Radiation Lightsource (SSRL).
News Feature

Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces.

Against a black background, thin, glowing red wires at top impinge on the hexagonal surface of a translucent mass. Small white dots travel along the edges of the surface in two directions. Within the mass, two orange cones meet at their tips.
News Feature

Waves of magnetic excitation sweep through this exciting new material whether it’s in superconducting mode or not – another possible clue to how unconventional...

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.
Illustration

A muon, center, spins like a top within the atomic lattice of a thin film of superconducting nickelate.

A brightly colored top is seen spinning between two layers of gray, purple and red spheres representing atoms in a nickel oxide superconductor.  The top represents a fundamental particle called a muon.
News Feature

Researchers discover they contain a phase of quantum matter, known as charge density waves, that’s common in other unconventional superconductors. In other ways, though...

Artist's illustration shows quantum states called superconductivity and charge density waves atop an atomic lattice of balls and sticks