June 26, 2017

2-D Material’s Traits Could Send Electronics R&D Spinning in New Directions

An international team of researchers fabricated an atomically thin material and measured its exotic and durable properties that make it a promising candidate for a budding branch of electronics known as “spintronics.”

Dig Deeper

Related stories

News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

The team developed a groundbreaking method that harnesses the structure of light to twist and tweak the properties of quantum materials. 

quantum control
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Brief

Devereaux was honored for contributions to materials science and was among seven Stanford-affiliated researchers named AAAS Fellows this year.

Thomas Devereaux
News Feature

The team developed a groundbreaking method that harnesses the structure of light to twist and tweak the properties of quantum materials. 

quantum control
News Feature

Researchers have uncovered new insights about tungsten's ability to conduct heat, which could lead to materials advancements for fusion reactor and aerospace technologies.

tungsten
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

The research could lead to a better understanding of how metals behave under extreme conditions, which will aid in the development of more resilient...

MEC
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.