August 8, 2016

PULSE, SIMES-led Experiments Point Toward Memory Chips 1,000 Times Faster Than Today’s

Silicon chips can store data in billionths of a second, but phase-change memory could be 1,000 times faster, while using less energy and requiring less space.

Dig Deeper

Related stories

News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

Strongly interacting electrons in quantum materials carry heat and charge in a way that’s surprisingly similar to what individual electrons do in normal metals...

An illustration shows electrons transporting heat from a warmer to a cooler area of a material.
News Feature

Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is a lot more complicated.

Photo of the laser lab apparatus used in the hopping ions experiment.
News Feature

Researchers have discovered that crystals can twist when they are sandwiched between two substrates – a critical step toward exploring new material properties for...

This image shows a diffraction pattern of gold nanodics between substrates.
News Feature

Strongly interacting electrons in quantum materials carry heat and charge in a way that’s surprisingly similar to what individual electrons do in normal metals...

An illustration shows electrons transporting heat from a warmer to a cooler area of a material.
News Brief

The American Physical Society recognized the SLAC and Stanford physicist for decades of groundbreaking work studying the strange behavior of electrons at the interfaces...

Photo - Harold Hwang
News Feature

The research reveals the potential for machine learning in understanding the complex behavior of quantum materials.

machine learning
News Feature

A groundbreaking study shows defects spreading through diamond faster than the speed of sound 

Shocking a diamond with a high-power laser produced defects that propagated faster than the speed of sound.