X-ray Scattering/Diffraction

RSS Feed RSS Feed

Data-mining for Crystal 'Gold' at SLAC's X-ray Laser

A new tool for analyzing mountains of data from SLAC’s Linac Coherent Lightsource (LCLS) X-ray laser can produce high-quality images of important proteins using fewer samples. Scientists hope to use it to reveal the structures and functions of proteins that have proven elusive, as well as mine data from past experiments for new information

LAMP: A New Tool Turns On at SLAC's X-ray Laser

A 2-ton instrument the size of a compact car, now available at SLAC's X-ray laser, makes it possible to capture more detailed images of atoms, molecules, nanoscale features of solids, and individual particles such as viruses and airborne soot.

LCLS Powers Chain Reaction of Light: A New Tool for X-ray Studies

Researchers have found a new way to probe molecules and atoms with an X-ray laser, setting off cascading bursts of light that reveal precise details of what is going on inside, which could allow scientists to see details of chemical reactions in a way not possible before.

Copper Shock: An Atomic-scale Stress Test

Scientists used the powerful X-ray laser at the U.S. Department of Energy's SLAC National Accelerator Laboratory to create movies detailing trillionths-of-a-second changes in the arrangement of copper atoms after an extreme shock.

Annual Synchrotron Award Goes to Longtime SSRL Scientist

Sean Brennan's decades of X-ray expertise keep pulling him back to SLAC even though he formally retired in 2008. During a recent visit to the lab, he accepted the Farrel W. Lytle Award for his extensive contributions to SLAC's Stanford Synchrotron Radiation Lightsource (SSRL).

X-ray Laser Explores New Uses for DNA Building Blocks

The founding father of DNA nanotechnology – a field that forges tiny geometric building blocks from DNA strands – recently came to SLAC to get a new view of these creations using powerful X-ray laser pulses.

For decades, Nadrian C. "Ned" Seeman, a chemistry professor at New York University, has studied ways to assemble DNA strands into geometric shapes and 3-D crystals with applications in biology, biocomputing and nanorobotics.