SUNCAT Center for Interface Science and Catalysis

RSS Feed RSS Feed


June 19, 2017
News Feature
A recent discovery by scientists from the SUNCAT Center for Interface Science and Catalysis could lead to a new, more sustainable way to make ethanol without corn or other crops.
May 18, 2017
News Feature
A tiny amount of squeezing or stretching can produce a big boost in catalytic performance, according to a new study led by scientists at Stanford and SLAC.
April 24, 2017
News Feature
An advance by SLAC and Stanford researchers greatly reduces the time needed to analyze complex catalytic reactions for making fuel, industrial chemicals and other products, and should improve computational analysis throughout chemistry.
April 4, 2017
News Feature
Stanford and SLAC researchers are leading a multi-year effort to produce nitrogen-based fertilizers in a sustainable way, by inventing a solar-powered chemistry technology that can make it right on the farm and apply it directly to crops, drip-irrigation style.
March 31, 2017
News Feature
Scientists at SLAC and Stanford have identified active carbon catalysts and developed an electrochemical cell designed to purify water in small villages.
November 29, 2016
News Feature
After 30 years in industry, he is leading a new focus at the lab’s SSRL X-ray light source and looking for ways to build on research strengths at SLAC and Stanford.
Simon Bare at SLAC’s Stanford Synchrotron Radiation Lightsource
November 28, 2016
News Feature
Squeezing a platinum catalyst a fraction of a nanometer nearly doubles its catalytic activity, a finding that could lead to better fuel cells and other clean energy technologies.
September 1, 2016
News Feature
The discovery could make water splitting, a key step in a number of clean energy technologies, cheaper and more efficient.
August 23, 2016
News Feature
The SLAC staff scientist is being honored for using theory and computation to help design new catalysts for generating and storing clean energy.
April 6, 2016
News Feature
Adding pressure could improve the performance of solar cells made of perovskites, a promising photovoltaic material.

Pages