Stanford Synchrotron Radiation Lightsource (SSRL)

RSS Feed RSS Feed

Annual Synchrotron Award Goes to Longtime SSRL Scientist

Sean Brennan's decades of X-ray expertise keep pulling him back to SLAC even though he formally retired in 2008. During a recent visit to the lab, he accepted the Farrel W. Lytle Award for his extensive contributions to SLAC's Stanford Synchrotron Radiation Lightsource (SSRL).

Hijacked Protein May Lead to New Therapeutic Interventions

Researchers hope to hijack a natural process called RNA interference to block the production of proteins linked to disease and treat medical conditions for which conventional drugs do not work, including cancer, heart disease, HIV and Parkinson’s disease.

Ribosome Research Takes Shape at SLAC

In a new state-of-the-art lab at SLAC National Accelerator Laboratory, components of ribosomes – tiny biological machines that make new proteins and play a vital role in gene expression and antibiotic treatments – form crystals in a liquid solution.

Signs at the lab's entryway warn of the potential for contamination – these delicate samples can be damaged by human touch, a sneeze or a dust particle.

Annual SSRL Award Honors Former Stanford Grad Student

Jonathan Rivnay, a former Stanford graduate student who is now a postdoctoral fellow at the Center of Microelectronics in Provence, France, will receive this year's William E. and Diane M. Spicer Young Investigator Award in recognition of his synchrotron studies of organic semiconductors.

SPEAR-heading X-ray Science for 40 Years

Last Saturday marked the 40th anniversary of an historic event: In 1973, a team of research pioneers extracted hard X-rays for the first time from SLAC's SPEAR accelerator. Like X-rays from an X-ray tube, the radiation generated by SPEAR can deeply penetrate a large variety of materials and probe their inner structures. However, SPEAR's X-rays are significantly more intense and unlock the possibility for brand new science.

Research Paints New Picture of 'Dinobird' Feathers

The first complete chemical analysis of feathers from Archaeopteryx, a famous fossil linking dinosaurs and birds, reveals that the feathers were patterned—light in color, with a dark edge and tip—rather than all black, as previously thought.