Stanford Institute for Materials & Energy Sciences (SIMES)

RSS Feed RSS Feed


Will 2-D Tin be the Next Super Material?

A single layer of tin atoms could be the world’s first material to conduct electricity with 100 percent efficiency at the temperatures that computer chips operate.

Scientists Invent Self-healing Battery Electrode

Researchers have made the first battery electrode that heals itself, opening a new and potentially commercially viable path for making the next generation of lithium ion batteries for electric cars, cell phones and other devices. The secret is a stretchy polymer that coats the electrode, binds it together and spontaneously heals tiny cracks that develop during battery operation, said the team from Stanford University and the Department of Energy’s (DOE) SLAC National Accelerator Laboratory.

Designer Glue Improves Lithium-ion Battery Life

When it comes to improving the performance of lithium-ion batteries, no part should be overlooked – not even the glue that binds materials together in the cathode, researchers at SLAC and Stanford have found.

Speed Limit Set for Ultrafast Electrical Switch

Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have clocked the fastest-possible electrical switching in magnetite, a naturally magnetic mineral. Their results could drive innovations in the tiny transistors that control the flow of electricity across silicon chips, enabling faster, more powerful computing devices.

Printing Innovations Provide 10-fold Improvement in Organic Electronics

Through innovations to a printing process, researchers have made major improvements to organic electronics – a technology in demand for lightweight, low-cost solar cells, flexible electronic displays and tiny sensors. The printing method is fast and works with a variety of organic materials to produce semiconductors of strikingly higher quality than what has so far been achieved with similar methods.

New Battery Design Could Help Solar and Wind Energy Power the Grid

Menlo Park, Calif. — Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life battery that could enable solar and wind energy to become major suppliers to the electrical grid.

X-ray Laser Explores How to Write Data with Light

Using laser light to read and write magnetic data by quickly flipping tiny magnetic domains could help keep pace with the demand for faster computing devices.

Now experiments with SLAC's Linac Coherent Light Source (LCLS) X-ray laser have given scientists their first detailed look at how light controls the first trillionth of a second of this process, known as all-optical magnetic switching.

For Superionic Material, Smaller is Better

A material that could enable faster memory chips and more efficient batteries can switch between high and low ionic conductivity states much faster than previously thought, SLAC and Stanford researchers have determined. The key is to use extremely small chunks of it.

Egg-cellent World-record Battery Performance

SLAC and Stanford scientists have set a world record for energy storage, using a clever “yolk-shell” design to store five times more energy in the sulfur cathode of a rechargeable lithium-ion battery than is possible with today’s commercial technology. The cathode also maintained a high level of performance after 1,000 charge/discharge cycles, paving the way for new generations of lighter, longer-lasting batteries for use in portable electronics and electric vehicles.

Pages