Photon Science Directorate

RSS Feed RSS Feed

SPEAR-heading X-ray Science for 40 Years

Last Saturday marked the 40th anniversary of an historic event: In 1973, a team of research pioneers extracted hard X-rays for the first time from SLAC's SPEAR accelerator. Like X-rays from an X-ray tube, the radiation generated by SPEAR can deeply penetrate a large variety of materials and probe their inner structures. However, SPEAR's X-rays are significantly more intense and unlock the possibility for brand new science.

For Superionic Material, Smaller is Better

A material that could enable faster memory chips and more efficient batteries can switch between high and low ionic conductivity states much faster than previously thought, SLAC and Stanford researchers have determined. The key is to use extremely small chunks of it.

Egg-cellent World-record Battery Performance

SLAC and Stanford scientists have set a world record for energy storage, using a clever “yolk-shell” design to store five times more energy in the sulfur cathode of a rechargeable lithium-ion battery than is possible with today’s commercial technology. The cathode also maintained a high level of performance after 1,000 charge/discharge cycles, paving the way for new generations of lighter, longer-lasting batteries for use in portable electronics and electric vehicles.

Building a Better Battery for Renewable Energy Storage

Solar, wind and other renewable energy sources reduce consumption of fossil fuels but also pose challenges to the electrical grid because their power generation fluctuates, heightening the need for better battery technology to store their energy until it's needed to feed the grid.

Shaken, Not Heated: the Ideal Recipe for Manipulating Magnetism

Scientists have found a way to distort the atomic arrangement and change the magnetic properties of an important class of electronic materials with ultra-short pulses of terahertz (mid-infrared) laser light without heating the material up. While the achievement is currently of purely scientific interest, the researchers say this new approach control could ultimately lead to extremely fast, low-energy, non-volatile computer memory chips or data-switching devices.

Designing Chemical Catalysts: There's an App for That

A big reason for publishing scientific results is to inform others who can then use your data and conclusions to make additional discoveries, technologies or products. But what good are findings if they are, well, hard to find – buried in tables in the pages of technical journals?