Materials Science

RSS Feed RSS Feed

For Superionic Material, Smaller is Better

A material that could enable faster memory chips and more efficient batteries can switch between high and low ionic conductivity states much faster than previously thought, SLAC and Stanford researchers have determined. The key is to use extremely small chunks of it.

X-rays Capture Electron 'Dance'

The way electrons move within and between molecules, transferring energy as they go, plays an important role in many chemical and biological processes, such as the conversion of sunlight to energy in photosynthesis and solar cells. But the fastest steps in this energy transfer have eluded detection.

Surprising Competition Found in High-Temperature Superconductors

A team led by SLAC and Stanford scientists has made an important discovery toward understanding how a large group of complex copper oxide materials lose their electrical resistance at remarkably high temperatures.

The materials in question are high-temperature superconductors, which conduct electricity perfectly with no resistance when cooled below minus 100 degrees Celsius. 

Study Provides Recipe for 'Supercharging' Atoms with X-ray Laser

Menlo Park, Calif. — Researchers using the Linac Coherent Light Source (LCLS) at the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory have found a way to strip most of the electrons from xenon atoms, creating a “supercharged,” strongly positive state at energies previously thought too low.

Stanford-SLAC Team Uses X-ray Imaging to Observe Running Batteries in Real Time

Most electric cars, from the Tesla Model S to the Nissan Leaf, run on rechargeable lithium-ion batteries – a pricey technology that accounts for more than half of the vehicle's total cost. One promising alternative is the lithium-sulfur battery, which can theoretically store five times more energy at a much lower cost.

SIMES Professor Honored for Superconductivity Research

Steven Kivelson, a member of SLAC’s Stanford Institute for Materials and Energy Sciences, has been named a winner of the 2012 John Bardeen Prize, in recognition of his theoretical research that has provided significant insights into the nature of “unconventional” superconductors.