LCLS Coherent X-ray Imaging (CXI)

RSS Feed RSS Feed


Backstory: Marc Messerschmidt, Staff Scientist

Marc Messerschmidt, a staff scientist at the Coherent X-ray Imaging (CXI) experimental station at SLAC's Linac Coherent Light Source X-ray laser, describes his daily work, which is far from routine.

Copper Shock: An Atomic-scale Stress Test

Scientists used the powerful X-ray laser at the U.S. Department of Energy's SLAC National Accelerator Laboratory to create movies detailing trillionths-of-a-second changes in the arrangement of copper atoms after an extreme shock.

Ribosome Research Takes Shape at SLAC

In a new state-of-the-art lab at SLAC National Accelerator Laboratory, components of ribosomes – tiny biological machines that make new proteins and play a vital role in gene expression and antibiotic treatments – form crystals in a liquid solution.

Signs at the lab's entryway warn of the potential for contamination – these delicate samples can be damaged by human touch, a sneeze or a dust particle.

Rapid Beam-switching Allows SLAC X-ray Laser to Multitask

A high-energy SLAC laser that creates shock waves and superhot plasmas needs to cool for about 10 minutes between shots. In the meantime, the rapid-fire pulses produced by SLAC's Linac Coherent Light Source X-ray laser, which probes the extreme states of matter produced by this initial laser shot, are unused.

X-ray Laser Brings Cellular Messengers into Focus

Last year's Nobel Prize in Chemistry – shared by Stanford School of Medicine Professor Brian Kobilka and Robert Lefkowitz of Duke University – recognized groundbreaking research in G protein-coupled receptors (GPCRs). GPCRs are embedded in cell membranes. They interact with signaling molecules outside of cells and trigger responses within cells.

X-ray Laser Explores New Uses for DNA Building Blocks

The founding father of DNA nanotechnology – a field that forges tiny geometric building blocks from DNA strands – recently came to SLAC to get a new view of these creations using powerful X-ray laser pulses.

For decades, Nadrian C. "Ned" Seeman, a chemistry professor at New York University, has studied ways to assemble DNA strands into geometric shapes and 3-D crystals with applications in biology, biocomputing and nanorobotics.

X-ray Laser Probes Biomolecules to Individual Atoms

An international team led by the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory has proved how the world's most powerful X-ray laser can assist in cracking the structures of biomolecules, and in the processes helped to pioneer critical new investigative avenues in biology.

Giant Virus, Tiny Protein Crystals Show X-ray Laser's Power and Potential

Two studies to be published February 3 in Nature demonstrate how the unique capabilities of the world’s first hard X-ray free-electron laser—the Linac Coherent Light Source, located at the Department of Energy’s SLAC National Accelerator Laboratory—could revolutionize the study of life.

Pages