Batteries

RSS Feed RSS Feed


Study Sheds New Light on Why Batteries Go Bad

A comprehensive look at how tiny particles in a lithium ion battery electrode behave shows that rapid-charging the battery and using it to do high-power, rapidly draining work may not be as damaging as researchers had thought – and that the benefits of slow draining and charging may have been overestimated.

A Look Inside SLAC’s Battery Lab

Tucked in a small laboratory at the Department of Energy's SLAC National Accelerator Laboratory, a team of scientists from the Stanford Institute for Materials and Energy Sciences (SIMES) is making and testing new types of lithium-ion batteries. Their goal: create a battery five times better than the ones we use today.

Public Lecture: X-rays Reveal Secret Life of Batteries

Researchers are using powerful synchrotron-based X-rays to peer inside lithium-ion batteries while they operate. Understanding how batteries function – and what causes them to eventually fail – will help scientists design the next generation of battery technologies.

New ‘Pomegranate-inspired’ Design Solves Problems for Lithium-Ion Batteries

An electrode designed like a pomegranate – with silicon nanoparticles clustered like seeds in a tough carbon rind – overcomes several remaining obstacles to using silicon for a new generation of lithium-ion batteries, say its inventors at Stanford University and the Department of Energy’s SLAC National Accelerator Laboratory.

Scientists Invent Self-healing Battery Electrode

Researchers have made the first battery electrode that heals itself, opening a new and potentially commercially viable path for making the next generation of lithium ion batteries for electric cars, cell phones and other devices. The secret is a stretchy polymer that coats the electrode, binds it together and spontaneously heals tiny cracks that develop during battery operation, said the team from Stanford University and the Department of Energy’s (DOE) SLAC National Accelerator Laboratory.

Pages